
Description of and User’s Manual for TUBA:

A Computer Code for

Generating Two-Dimensional Random Fields

via the Turning Bands Method

July, 1990

by

D. A. Zimmerman1 and John L. Wilson2

1Science and Engineering Technology Applications, Inc., Cedar Crest, New Mexico
2New Mexico Institute of Mining and Technology, Socorro, New Mexico

(revised November, 2005)

Disclaimer

Neither the developers of this software nor any persons or organizations

acting on their behalf make any warranty, express or implied, with respect

to this software or assumes any liabilities with respect to its use or misuse,

or for the interpretation or misinterpretation of any results obtained from

this software, or for any damages resulting from the use of this software.

Cover: A synthetic random field representing variations in the hydrologic

properties of a layered subsurface environment. The conceptual model

of this system and generation of the field is described in section 4.3.4.

Typeset in TEX and published by:

���������
	���
��
27 Ponderosa Drive, Suite 100

Cedar Crest, New Mexico 87008���������������������! #"$��%#&!'�(#�!(#)�*

Description of and User’s Manual for TUBA:

A Computer Code for

Generating Two-Dimensional Random Fields

via the Turning Bands Method

July, 1990

by

D. A. Zimmerman1 and John L. Wilson2

1Science and Engineering Technology Applications, Inc. Cedar Crest, New Mexico
2New Mexico Institute of Mining and Technology, Socorro, New Mexico

(revised November, 2005)

Published by

27 Ponderosa Drive, Suite 100
Cedar Crest, New Mexico 87008��� ��������� �������� $"$� %$&�'�($��($)�*

Acknowledgements

A significant amount of credit is owed to Dr. Allan Gutjahr, Department of Math-

ematics, New Mexico Institute of Mining and Technology, for his support throughout

the project, especially with regard to the use of spectral methods for random field gen-

eration. We are also grateful to Mr. Warner Losh for developing the tools necessary for

producing the plots of the random fields and to Mr. David Becker for his assistance in

helping us typeset this document in TEX.

This work was performed under a research grant sponsored by the U.S. Department

of Energy; we are grateful for the financial support we received. Our appreciation is also

extended to the project officers, Messrs. Jim Chism, E. B. Nuckols, and Edith Allison

for their contributions on this project.

ii

Preface

TUBA, the computer code, was first introduced in 1981. From 1988 to 1990, many new

enhancements were added, the code was restructured and this user’s manual was written. In

the 15 years since the 1990 version of TUBA was released, it has been sent to academic and

commercial institutions throughout the world from England to Korea. As this (rebuilding

TUBA and writing the user’s manual) was a sideline research project during my graduate

studies at New Mexico Institute of Mining and Technology, its maintenance eventually fell by

the wayside. However, recent interest in the code has provided the motivation to produce a

more readily available copy of the user’s manual in the currently popular pdf format.

At the time this manual was initially written, the plethora of low-cost graphics software

we enjoy today was not available; personal computers were not even in mainstream use at

that time! Therefore, the random field plots displayed in the manual had to be generated via

low-level, device-dependent C-subroutine calls to a laserjet printer. The original document

was produced by running the pages with bitmap graphics through the printer twice – once

for the graphic image and the second time for the figure caption and page number! While

such graphics software is available today, the time needed to convert all of the output fields

to, say, color, shaded-relief plots, can not presently be allocated to this task. Therefore, as

an ‘interim’ measure, all of the original bitmap images and other plots whose source files have

been forever lost, have been scanned so they can be incorporated into the 2005 pdf version

of the manual. The note at the bottom of the cover page (“revised November 2005”) should

therefore probably be cast as “revived November 2005.”

There remain minor inconsistencies betweeen some of the input files shown in the manual,

originally written for TUBA version 2.0 released in 1990, and the input required by the latest

version of the code, TUBA version 2.11. However, all of the inputs to the current version

are described in the addendums to Chapter 4, under TUBA version 2.10 Documentation and

TUBA version 2.11 Documentation. It is important to read these sections as they describe

several user-requested code enhancements.

There have been plans to develop a GUI for TUBA, complete with random field plotting,

conditional simulation capabilities and HTML Help documentation. These plans also include

rewriting the manual, updating the printed input files to reflect the current version of the code,

incorporating version 2.10 and 2.11 documentation into the appropriate places in Chapter 4,

and producing the graphics in color. However, whether and when these plans will actually

materialize is undetermined at this time. Until then, I hope you find the current version to be

a useful tool.

D. A. (Tony) Zimmerman, P.E.

SETA, Inc.

iii

iv

Table Of Contents

Chapter 1: Introduction

1.1 Code Purpose . 1

1.2 Summary of Code Capabilities . 2

1.3 Code History . 2

1.4 Scope of Report . 3

Chapter 2: Overview of Theory

2.1 Statistical Characterization of Random Fields . 5

2.1.1 Fundamental Concepts . 5

2.1.2 Estimation of Random Field Statistics . 10

2.2 The Turning Bands Method . 13

2.3 Spectral Line Generation Methods . 16

2.4 The Moving Average Process and the Telis Covariance . 21

2.5 Generalized Covariances and Intrinsic Random Functions . 24

2.6 Simulation of Areal Average Random Fields .26

2.7 Simulation of Anisotropic Random Fields . 28

Chapter 3: Line Process Generation – Practical Aspects

3.1 Geometrical Considerations .29

3.2 Spectral Generation of the Line Process .30

3.2.1 Tests to Determine the Effect of Spectral Approximations 30

3.2.2 Effect of Truncating the Spectrum . 31

3.2.3 Effect of Discretizing the Spectrum . 32

3.3 Moving Average Generation of the Line Process . 34

Chapter 4: User’s Manual

4.1 Code Input Description . 35

4.1.1 Output Field Parameters . 35

4.1.2 Covariance Model Parameters . 36

4.1.3 Turning Band Parameters . 37

4.1.4 Output File Parameters . 39

4.1.5 Simulation Parameters . 39

v

User’s Manual continued

4.2 Example Runs – Input, Output, and Analysis . 40

4.2.1 Generation of Stationary Isotropic Random Fields .42

4.2.2 Generation of Anisotropic Random Fields . 51

4.2.3 Generation of Non-Stationary Random Fields . 53

4.2.4 Generation of Areal Average Processes .57

4.2.5 Generation at Arbitrary Points in Space . 61

4.2.6 Generating Subregions at Higher Resolution .64

4.3 Some Practical Aspects Illustrated .69

4.3.1 Sample Statistics versus Target Statistics . 69

4.3.2 Representing Spatial Variability Patterns . 70

The Mask File Option .74

4.3.3 Using the Spectral Method of Shinozuka and Jan .77

4.3.4 Hydrology Application – a layered System . 80

4.3.5 Designing Christmas Cards with TUBA .82

4.3.6 An Important Note About Generating Large Fields. .85

TUBA version 2.10 Documentation .89

Code Modifications. .90

Reproducing the “ith” Simulation Using Two RNG Seeds .92

Generating Onto An Irregularly-spaced Finite-Difference Grid 94

The Ergodicity Of The Turning Bands Algorithm . 96

TUBA version 2.11 Documentation .97

Memory Requirements Versus Execution Speed .98

Specifying Generalized Covariance Model Parameters .98

Specifying Turning Bands Parameters .99

New Simulation Parameters Options . 99

Effect of Change in Default Turning Bands Line Discretization Length 100

Chapter 5: Programmer’s Mannual

5.1 Redimensioning . 101

5.2 Code Structure and Programming Notes . 102

5.3 Random Number Generators and the Fast Fourier Transform 104

5.4 User-defined Covariance Models . 105

References .107

A reprint of Mantoglou and Wilson , [1982] . Appendix A

TUBA version 2.11d Computer Code Listing .Appendix B

vi

List of Figures

Figure 1. Two-dimensional covariance models . 7

Figure 2. Schematic of the Turning Bands algorithm . 15

Figure 3. Radial spectral density functions . 17

Figure 4. Spectral distribution functions .18

Figure 5. Schmatic of the Moving Average process . 22

Figure 6. Effect of frequency spacing on correlation structure of line process 33

Figure 7. Effect of discretization interval on correlation structure of line process. . .34

Figure 8. Plot of Gaussian random field . 46

Figure 9. Plot of Bessel random field . 47

Figure 10. Plot of exponential random field .48

Figure 11. Plot of Telis random field . 49

Figure 12. Variogram estimates of TUBA generated fields . 50

Figure 13. Variogram estimates for anisotropic Gaussian field . 51

Figure 14. Plot of anisotropic Gaussian random field . 52

Figure 15. Plot of an Intrinsic random field of order-0 .54

Figure 16. Plot of an Intrinsic random field of order-1 .55

Figure 17. Plot of an Intrinsic random field of order-2 .56

Figure 18. Exponential field with areal averaging = 1
4th correlation length 58

Figure 19. Exponential field with areal averaging = the correlation length 59

Figure 20. Exponential field with non-overlaping areal averaging60

Figure 21. Finite element grid superimposed on finite difference grid63

Figure 22. Alignment of block- and point-centered grids .67

Figure 23. Gaussian field with high-resolution subregion. .68

Figure 24. A random field at three different levels of resolution . 71

Figure 25. Gaussian field plotted as contours and shaded terraces.72

Figure 26. Exponential field plotted as contours and shaded terraces73

Figure 27. Exponential field plotted using profiles and terraced contours 75

vii

Figure 28. Plan and perspective views of an exponentiated Gaussian field76

Figure 29. Gaussian field demonstrating the mask file option . 78

Figure 30. Exponential field generated via the method of Shinozuka and Jan79

Figure 31. Plot of a synthetic layered hydrogeologic system. .81

Figure 32. Schematic of where not to place the Turning Bands origin 83

Figure 33. Random field generated by a mad scientist .84

Figure 34. Exponential field spanning 200 correlation lengths .86

Figure 35. Exponential field generated using only four Turning Band lines 87

Figure 36. Point-Centered, Irregularly-Spaced Finite Difference Grid95

Figure 37. Order of subroutine calls in TUBA . 103

Figure 38. Graphical “test” of random number generator .106

List of Tables

Table 1. 2D covariance models and their radial spectral density functions 10

Table 2. Polynomial Generalized Covariance models in TUBA .26

Table 3. Effect of truncating the spectrum on the variance of the fields 32

Table 4. Spectral parameters for generating the line process . 33

viii

Chapter 1

Introduction

TUBA is a computer code for generating synthetic two-dimensional random fields

via the Turning Bands Method. TUBA was first introduced by Mantoglou and Wilson,

[1981]. Some aspects of the code are described in Mantoglou and Wilson [1982] and the

code is reviewed in the textbook by Bras and Rodriguez [1984]. Since 1981, numerous

requests for TUBA have been made, and it was in response to those requests that this

report was compiled. The overall goal in compiling this report was, therefore, to produce

a fully documented computer code that is directed toward the application of this tech-

nology. The primary objectives of this work were to (1) provide a “refurbished” version

of the computer code, (2) incorporate additional options which expand its usefulness and

improve its efficiency, (3) review the theory behind the algorithms, (4) discuss important

practical aspects that facilitate the proper application of the code, and (5) provide doc-

umentation with a user’s manual and a programmer’s manual. The 1990 version of the

code was called version 2.0; the current version is version 2.11.

§§ 1.1 Code Purpose

The synthetic generation or simulation of two-dimensional random fields has many ap-

plications in the geophysical sciences of mining, petroleum engineering, and hydrology

[see e.g., Warren and Price, 1961; Mejia and Rodriguez-Iturbe, 1974; Journel and Hui-

jbregts, 1978; Smith and Freeze, 1979]. The main application areas in hydrology are the

synthetic generation of rainfall over an area or the spatial distribution of runoff or aquifer

properties. In petroleum engineering, the main application is the generation of reservoir

properties, while in mining it is ore grades. The ability to generate these random fields

is important because it is very difficult to both measure and characterize the in situ

distribution of these highly variable quantities (e.g., ore grade, permeability, porosity).

In hydrology and petroleum engineering, the ability to simulate synthetic random fields

provides a means of assessing the influence (and uncertainty) of the spatial variability

in the permeability on the head or pressure of a flow field, and the solute concentration

of misible displacement, through stochastic models. This type of analysis has recently

been carried out via Monte Carlo simulations of the physical processes [e.g., Smith and

Freeze, 1979; Delhomme, 1979; Smith and Schwartz , 1981 and many others]. Here,

multiple realizations of a random input process having the statistical properties of the

1

true (hypothesized or estimated) underlying field are used sequentially in a deterministic

hydrologic or petroleum simulation model to obtain a series of output processes whose

statistics can be calculated and related to the input process. Examples of the appli-

cation of the Turning Bands method for simulation of natural processes can be found

in Journel [1974], Journel and Huijbregts [1978], Delhomme [1979], and Tompson et al.

[1989]. Examples of TUBA 1.0 applications are found in Frind et al. [1987], Molissis

[1988], Sudicky and MacQuarrie [1989], MacQuarrie and Sudicky [1989], Sudicky et al.

[1989], Kueper et al. [1989 and 1990], Sampier and Neuman [1989], Wagner and Gorelick

[1989], Gomez-Hernandez and Gorelick [1989], and Rubin and Gomez-Hernandez [1990].

§§ 1.2 Summary Of Code Capabilities

TUBA is a computer code for generating synthetic two-dimensional stationary or non-

stationary random fields. Random fields are commonly characterized by their statistical

properties (e.g., mean, variance and covariance). Five functional forms for the covariance

structure are available in TUBA, these are: exponential, Gaussian, Bessel, Telis, and

Generalized Covariance models. Other forms can be supplied by the user. TUBA can

generate isotropic or anisotropic random fields and can simulate areal average processes.

The random fields can be generated onto a gridded system (e.g., at the grid points or

nodes of a block or point-centered finite difference grid) or at arbitrary locations in space

(e.g., at the gauss points of a finite element grid). TUBA can be used to generate the

field values in local areas at much greater resolution than the original simulated field.

The fields can be generated with a normal or a lognormal distribution. The size of the

simulation is limited only by the virtual memory capabilities of the computer it is run on;

random fields with over one million nodes have been generated with TUBA using a PC.

§§ 1.3 Code History

TUBA was originally written in Fortran IV by Aristotelis Mantoglou while he was a

Masters student at MIT in 1981; with this new version, the code has been modularized,

vectorized, converted to Fortran 77, expanded and modified to run more efficiently.

Modularization (breaking the code into subroutines) enhances the readability of the code

and enables persons familiar with the algorithms to understand (and perhaps modify)

the program. Vectorization means that input data arrays, internal working arrays,

and output field data arrays are all addressed through a single vector. This permits

greater flexibility in choosing the type and size of problem to be run while reducing

computational effort by minimizing paging (swapping pages of memory to and from

2

disk). It also provides a convenient way to redimension the code by changing a single

parameter statement. Conversion to Fortran 77 really means conversion to a particular

programming style while taking advantage of recent Fortran enhancements which are

not available on Fortran IV compilers. Input and output routines have been improved

with respect to ease of use and flexibility and new options were added; these include:

the ability to generate field values at arbitrary locations in space (as opposed to only

gridded output) and a more general ability to generate anisotropic random fields.

TUBA was also modified to run more efficiently by incorporating a Fast Fourier

Transform (FFT) algorithm for spectral generation of the line processes. Other line

process algorithms in the code include a spectral method, a moving average method,

and a Brownian motion method. Finally, an FFT subroutine and two random number

generator subroutines were added so that TUBA requires no external librarys or compiler

dependent intrinsic subroutines in order to run.

§§ 1.4 Scope of Report

This report provides a condensed review of the theory behind the algorithms used in

TUBA, a discussion of important practical considerations, a description of how to run

the program, and some documentation of the Fortran code itself. Chapter 2 reviews

some fundamental concepts associated with the statistical characterization of random

fields and reviews the theory behind the algorithms used in TUBA. Chapter 3 provides

important guidelines of practical importance related to the line process generation and

its effect on the accuracy and efficiency of the simulations. Chapter 4 (the User’s Man-

ual) provides a description of the code input and provides general guidelines on how to

properly select a consistent set of input values. It also contains examples of how to choose

input values for specific cases, illustrating the interactive or batch session, and shows

the results (plots, statistical analyses) of the simulations. Chapter 5 (the Programmer’s

Manual) discusses aspects associated with implementation of TUBA on different com-

puter systems, describes the structure of the Fortran code, and explains some operational

features of certain parts of the code. Appendix A contains a reprint of Mantoglou and

Wilson , [1982]. A listing of the TUBA computer code is provided in Appendix B. The

source code and executable can be downloaded from http://www.setainc.com/tuba.

3

4

Chapter 2

Overview Of Theory

This chapter begins with a review of some fundamental concepts associated with

the statistical characterization of random fields. This leads to an understanding of the

motivation for the type of synthetic random fields generated by TUBA. Following this, a

cursory review of the theory behind the Turning Bands method and algorithms ancillary

to the Turning Band method is presented. Finally, a discussion of intrinsic random fields,

areal average processes, and anisotropic random fields is presented.

§§ 2.1 Statistical Characterization of Random Fields

This section begins with an explanation of some basic concepts that are essential for

understanding how the complex behavior of random fields can be described mathemat-

ically. The section ends by describing some techniques for estimating the statistics of

discrete random fields.

§§ 2.1.1 Fundamental Concepts

A random field can be conceptualized as a collection of random variables ordered in space

– a spatial stochastic process. Each random variable has its own probability density

function, thus a complete description of the process requires knowledge of the joint

probability distribution over the entire domain. Practically speaking, this is impossible

to obtain, particularly when only one realization of the field is available. Therefore,

the process is usually described by a limited number of statistical parameters (called

moments) which characterize the probability density functions.

Gaussian Processes

The probability distribution of a random variable or process can be described exactly if

all of its moments are known. The statistical moments are defined by

E[Zn] =

+∞
∫

−∞

znf(z) dz n = 0, 1, 2, . . .

where E[] denotes expectation, Z is the random variable, and f(z) is its probability

density function. A Gaussian process (i.e., one that is normally distributed) can be

completely described from knowledge of its first two moments (the mean, m, and the

5

variance, σ2). This is because all higher order odd moments are zero and all higher order

even moments depend only on σ2 [Vanmarke, 1984]. Fortunately, a great many natural

processes can be described as having Gaussian behavior [Neuman, 1982]. However, even

with a Gaussian process, we are still faced with the task of determining m and σ2 for

each point in the field – again, an impractical task when based on field measurements

and an impossible task when there is only one realization. There are, however, a few

other key properties of random fields which make this problem tractable.

Covariances

The very concept of a “random field” is nothing more than a mathematical abstraction

which is used to describe a complex natural process, such as a heterogeneous permeability

distribution in an aquifer or petroleum reservoir. Early efforts to obtain statistical

descriptions of aquifer heterogenieties focused on the frequency distribution approach

where the probability behavior of the material variations is determined from a histogram

of the measured values. An inherent assumption associated with this approach is that

material property variations are governed by the same probability law at every point in

space; i.e., the measurements are assumed to be independent of each other and hence

lack correlation, even if they are located in close proximity. It is quite obvious, however,

from observable features in natural deposits, that material properties at adjacent points

will be related. The covariance function, C(~x1, ~x2), is used to characterize this spatial

dependence between two points in the field, and is defined as

C(~x1, ~x2) ≡ E[Z(~x1)Z(~x2)] =

+∞
∫

−∞

Z(~x1)Z(~x2)f(~x1, ~x2) d~x (1)

where ~x = (x, y) is a location vector, Z(~x) is the random field with mean zero and

f(~x1, ~x2) is the joint probability density function of Z(~x) at the points ~x1 and ~x2. As

the lag or separation distance between the two points becomes large, they become less

correlated (f(~x1, ~x2) → 0), hence their covariance tends to zero. The covariance function

takes on its maximum value at zero lag where it is equal to the variance of the process.

A plot showing four different covariance functions, all of which are programmed into

TUBA, is shown in Figure 1. This spatial covariance structure is sometimes directionally

dependent in which case it is said to be an anisotropic covariance. For example, in a

sedimentary deposit the permeability field is likely to be correlated over much greater

distances in the horizontal plane than the vertical direction. Frequently, the covariance

behavior is assumed to be the same at every point in the field, which leads to the concept

of statistical homogeniety.

6

7

Stationarity/Statistical Homogeniety

The property of being statistically homogeneous or stationary “in the strict sense” means

that the joint probability behavior among a set of variables remains invariant under

translation (but not rotation) i.e., the probabilities depend only on their relative po-

sitions, not their absolute location. Since, in practice, only the first two moments are

estimated, the process is assumed to possess this property “in the weak sense” and is

said to be weakly stationary or second-order stationary. Most often the term station-

ary is used with weak stationarity being implied. A random process Z(~x) is said to be

second-order stationary if

E[Z(~x)] = m

E[Z ′(~x)Z ′(~x +~ξ)] = C(~x,~x +~ξ) = C(~ξ)

where m is a constant, Z ′(~x) ≡ Z(~x) −m, and ~ξ is the vector separation between the

points ~x and ~x +~ξ. In other words, if the mean is constant and the covariance between

two points depends only on their vector separation and not their absolute locations, then

the process is (second-order) stationary. Thus, for stationary Gaussian processes, we can

characterize the joint probability behavior from estimates of the mean and covariance

function based on measurements taken at various points in space. If the mean varies in

space, we can subtract it from the process to leave a mean–removed stationary process.

Ergodicity

One other property, which is primarily of conceptual value, is that of ergodicity. After

forming estimates of the mean and covariance function, how can we be sure that our

sample statistics reflect the true character of the underlying random field? The ergodic

hypothesis states that the statistics of a random process can be derived either from

repeated sampling of an ensemble of statistically equivalent media (multiple realizations)

at the same point, or from samples collected at different points within a single realization

of the stochastic process. Ergodicity is essentially a statement of equivalence between

spatial statistics and ensemble statistics. In the real world, when we deal with spatial

random processes (e.g., a geologic formation), we have only one realization and have no

alternative but to adopt the ergodic hypothesis. We assume there is enough information

contained in the one realization to characterize the process statistically by estimating

the first two moments of its probability distribution based on a finite (usually small)

number of observations of the process (see e.g., Journel and Huijbreights [1978]).

Correlation Scale

Invoking the ergodic hypothesis is reasonable if the scale of the problem is much larger

than the correlation scale of the process. The term “correlation scale” is often used in-

8

terchangeably with “correlation length” or “integral scale”. In the hydrologic literature,

it represents a measure of the average distance over which the field variables are cor-

related, i.e., it relates information about the predictibility of the process. The integral

scale, λI , is defined as [Gelhar , 1984]

λI =
1

σ2

∞
∫

0

C(ξ) dξ (2)

where C(ξ) is the covariance function, ξ is the separation distance, and σ2 is the variance

of the process. The meaning of λI (a scalar quantity with length units) may be somewhat

ambiguous because λI depends on the particular covariance function, C(ξ). For exam-

ple, the exponential covariance function, C(ξ) = σ2e−ξ/λ, where λ is the correlation

parameter, has integral scale

λI =
1

σ2

∞
∫

0

σ2e−ξ/λ dξ = λ

while the Gaussian covariance function†, C(ξ) = σ2e−(ξ/λ)2, has integral scale

λI =
1

σ2

∞
∫

0

σ2e−(ξ/λ)2 dξ =

√
π

2
λ.

There are also covariance functions with zero integral scale; For example, a hole function

defined by C(ξ) = σ2(1 − ξ/λ)e−ξ/λ has integral scale

λI =
1

σ2

∞
∫

0

σ2(1− ξ/λ)e−ξ/λ = 0.

In order to compare the behavior of random fields with different covariance structures,

particularly for fields with zero integral scale, there needs to be another reference cor-

relation scale that all the covariance functions can be related to. The separation λe at

which the correlation function‡ drops to e−1 is often used as a reference measure of the

correlation scale. At a separation or lag distance of ξ = λ, both the exponential and the

† The Gaussian covariance function, a mathematical model for describing the spatial behavior of a
process, should not be confused with the term “Gaussian process” which refers to the manner (irrespec-
tive of spatial position) in which the values of the process are distributed about the mean. In Mantoglou

and Wilson [1981, 1982] the Gaussian covariance function is referred to as the “double exponential”
covariance function.
‡ The correlation function is a normalized covariance function, i.e., it is the covariance function

divided by the variance and takes on values in the interval [-1, 1].

9

Gaussian covariance models produce a drop in their correlation functions to e−1, i.e.,

they both have the same correlation scale by this measure. The term “correlation scale”

or “correlation length” is thus an arbitrary measure which depends on how it is defined.

Throughout this report, the term “correlation length” refers to the parameter λ of

the covariance function rather than its formal definition given by λI or λe above. The

covariance model equations which are programmed into TUBA (Table 1) are written

in terms of a correlation parameter b ≡ 1/λ. As demonstrated in section 4.2, the

correlation parameter b must be modified for the Bessel and Telis covariance models in

order to affect a drop in their correlation functions to e−1 at the same separation as the

exponential and Gaussian covariance models.

Covariance Two-Dimensional Covariance Radial Spectral Density

Model Function, C(r) Function, f(ω)

Exponential σ2 e−br ω/b

b[1+(ω/b)2]
3/2

Gaussian σ2 e−(br)2 1
b (ω

2b) e−(ω
2b)2

Bessel σ2 brK1(br)
2(ω/b)

b[1+(ω/b)2]
2

Telis
σ2 { I0(br) − L0(br) +

br [I1(br) − L−1(br)] }
4(ω/b)2

πb[1+(ω/b)2]
2

Table 1. Two-dimensional covariance models and their corresponding radial spectral density functions.
K1 = modified Bessel function of the second kind of order one; I0, I1 = modified Bessel functions
of the first kind of order zero and one, respectively; L0, L−1 = modified Struve functions of order
zero and minus one, respectively [Abramowitz and Stegun, 1964].

§§ 2.1.2 Estimation of Random Field Statistics

The discrete random fields generated by TUBA essentially represent very small sample

fields taken from infinitely large, continuous theoretical random fields. Consequently, one

would not expect the estimated statistics of the sample fields to match the theoretical

statistics perfectly. On the other hand, one would like to have some confidence that

the generation algorithm for the discrete fields preserves the desired statistical behavior.

10

One way of checking this would be to estimate the statistics over an ensemble of discrete

fields and developing confidence intervals for, say the mean and covariance statistics,

using standard statistical methods.

Spatial versus Ensemble Statistics

In many cases, it is important to determine how well the sample statistics of a single

realization compare with the theoretical statistics. The random field data are correlated

over several correlation lengths of the process, therefore the sample field should be large

relative to the correlation length of the process (spanning many correlation lengths, say

25 or more) in order to accumulate a sufficient number of independent samples upon

which to compute the statistics. This spatial method of checking the statistics is valid

for stationary fields and is equivalent to the ensemble method because the generation

algorithm is ergodic [Mantoglou and Wilson , 1982]. The effect of the sample size on

estimation of the mean and variance statistics is illustrated in section 4.3.1.

Theoretical versus Sample Statistics

One may be tempted to “massage” the generated sample random field, Zs(~x), so that

its mean and variance statistics match their theoretical values exactly. For example, the

transformation

Ẑs(~x) =
σt

σs
(Zs(~x) − µs) + µt ←−

(

DO NOT

USE THIS

)

where µs, µt = sample and theoretical mean respectively

σ2
s , σ2

t = sample and theoretical variance respectively

will force the one realization, Ẑs(~x), to have µ̂s = µt and σ̂2
s = σ2

t . What is often over-

looked however, is that µs and σs are themselves random variables whose expected values

are µt and σt respectively. Consider only the transformation Ẑs(~x) = Zs(~x) − µs + µt;

this forces the theoretical mean to be preserved for this particular realization, however,

the Ẑs(~x) field actually represents a sample realization drawn from a population or

ensemble of random fields whose mean is given by

E[Ẑs(~x)] = E[Zs(~x)] − E[µs] + E[µt]

= µs − µt + µt

= µs

Thus the one Ẑs(~x) field has mean µt, but that field was, in essence, drawn from an

ensemble of random fields whose theoretical mean is µs, not µt. To make such trans-

formations on each field that is generated, is the same as changing the target mean and

11

covariance statistics every time a new field is generated. This is probably not what is

intended, nor is it desirable, particularly if the fields are being used in Monte Carlo

simulations, therefore, this approach is not recommended. Instead, it is better to accept

the fact that sample statistics based on a single realization will not match the theoretical

values exactly.

In many instances, it may be of interest to observe the response of a system to

a change in only the variance of the input. For example, how might the degree of

reservoir heterogeniety (as reflected by the variance of the permeability field) affect the

areal sweep efficiency or the production well history in a petroleum reservoir? Because

different permeability fields will yield different model performance measures (even if the

sample variances are equal), we seek to maintain the same pattern of spatial variability

while changing only the variance (or the mean, or both) of the process. The output field

can be properly scaled in both mean and variance using the transformation

Ẑ(~x) =
σ̂t

σt
(Z(~x) − µt) + µ̂t (3)

where µt, µ̂t = the original theoretical and new target mean respectively

σ2
t , σ̂2

t = the original theoretical and new target variances respectively.

Here the only random quantity is the Z(~x) field itself. Taking expectations,

E[Ẑ(~x)] ≡ µ̂ = µ̂t

E
[

(Ẑ(~x)− µ̂)
2
]

≡ σ̂2 = σ̂2
t ,

shows that the target mean and variance are (in theory) preserved, although again, it

is not likely that the sample statistics, µ̂s and σ̂2
s , (based on a single realization) will

match their theoretical (in this case, target) values.

Variogram/Covariance Analysis

The sample field must be of sufficient resolution in order to adequately represent the

covariance structure and enable it to be estimated; usually 8 to 12 output points per

correlation length is sufficient for this purpose. Variogram analysis is a commonly used

technique for estimating the covariance structure of a process. The variogram, γ(ξ),

(technically the semi-variogram) is defined by [Journel and Huijbregts, 1978]

γ(ξ) =
1

2
E

[

(Z(~x +~ξ)− Z(~x))
2
]

. (4)

If we define Ẑ(~ξ) ≡ Z(~x +~ξ)−Z(~x), the expectation in (4) becomes E
[

(Ẑ(~ξ)2)
]

which

is, via (1), the covariance of Ẑ(~ξ) at zero lag (ξ = 0) or the variance of Ẑ(~ξ). In

12

other words, the variogram is a kind of “variance of differences” between the points of

the process. At zero lag, there is no variability in the differences since the points are

the same, hence γ(0) = 0. At larger and larger lags, the amount of variability in the

differences between values of the process increases to its maximum, the variance of the

entire process. The variogram thus resembles an upside down covariance function and

can be expressed in terms of covariances as

γ(ξ) = C(0) − C(ξ). (5)

Variogram analysis is more powerful than covariance analysis because it is not affected

by a linear drift or trend in the process while covariance estimates are. Variogram

estimates for some discrete random fields generated with TUBA were calculated using

(4) and are shown in Figure 12. The analysis involves fitting a theoretical variogram

model (e.g., equation (5) and the covariance models in Table 1) through the data points

representing the variogram estimates at each lag. Experience has shown that any one

of the covariance models in Table 1 can probably be used to describe the covariance

behavior of the discrete field simply by ajusting the correlation length parameter b in

each covariance model. Because of this, it may be desirable to estimate the spectrum

of the process, since it relates information about the spatial variation of the field that

is perhaps more indicative of the “character” of the random field. The differences in

the character of the fields generated using different covariance models is illustrated in

Figures 8–11. Techniques for estimating the spectrum are described in Jenkins and

Watts [1968], Box and Jenkins [1970], Vanmarke [1985], Shumway [1988], and others.

More is said about the spectrum of the process in sections 2.3 and 3.2.

§§ 2.2 The Turning Bands Method

Simulation of two and three dimensional random fields via the Turning Bands Method

was originally documented by Matheron, [1973]. Presented here are the basic concepts

behind the generation technique; for a more detailed description of the Turning Bands

method, see Mantoglou and Wilson, [1981, 1982], or the review of their work in Bras

and Rodriguez-Iturbe [1984].

The Turning Bands Method arises from purely geometrical considerations in which

the multidimensional simulation is reduced to a series of unidimensional simulations

taken along lines oriented at various angles as follows: From an arbitrary origin in space

(the Turning Bands origin), a number of radial lines distributed at uniform spacing on

[0, 2π] are extended outward as shown in Figure 2. The lines are evenly spaced to reduce

13

computation cost and insure ergodicity [Mantoglou and Wilson , 1982]. For stationary

fields, a one-dimensional, mean zero, second-order stationary process, Z1(ζ), is generated

along each line having covariance function C1(ξ). Let Z1(ζ0) represent the value of a

line process where the orthogonal projection from the line extends through a point “o”

in the simulated two-dimensional field, Zs(~x). Then the value of the random field at

that point, say at ~x = ~xk, is assigned a weighted sum of the Z1(ζ0) values from each

line as:

Zs(~xk) =
1√
L

L
∑

i=1

[Z1(ζ0)]i (6)

where L is the number of Turning Band lines. The algorithm is derived by applying

the definition of covariance to points of Zs(~x) using equation (1) and accounting for the

geometrical relationship between Z1(ζ) and Zs(~x). The question remains, what is the

form of C1(ξ) and how do we generate Z1(ζ) ?

Mantoglou and Wilson [1982] derive the correspondence between the unidimensional

covariance, C1(ξ), and the isotropic covariance function of the two-dimensional field,

C2(r), and show that
r

∫

0

C1(ξ)

(r2 − ξ2)
1/2

dξ =
π

2
C2(r). (7)

Unfortunately, this is an integral equation in which C1(ξ) can not be directly expressed

as a function of C2(r). However, for two-dimensional isotropic processes, Mantoglou and

Wilson derive a relationship between the radial spectral density function, f(ω), of the

two-dimensional isotropic field and the spectral density function of the one-dimensional

line process, S1(ω), which results in a mathematically tractable relationship between

C1(ξ) and C2(r). The symbol ω represents the spatial frequency or wave number. The

two-dimensional isotropic covariance function is related to the radial spectral density

function through

f(ω) =
ω

σ2

∞
∫

0

C2(r)J0(ωr) rdr (8)

where J0() is a Bessel function of the first kind of order zero, and σ2 is the variance of

the two-dimensional process. The spectrum of the line process is related to the radial

spectral density function through S1(ω) = σ2

2 f(ω). Finally, C1(ξ) can be derived from

its spectral representation as

C1(ξ) = 2

∞
∫

0

cos(ωξ)S1(ω) dω = σ2

∞
∫

0

cos(ωξ)f(ω) dω. (9)

14

Figure 2. Schematic representation of a discrete random field and the Turning Bands lines.

15

Thus, given a specified two-dimensional isotropic covariance function, the corre-

sponding line process covariance function can be derived using (8) and (9).

The line process Z1(ζ) can be generated using any spectral method or, depending

on the properties of the unidimensional covariance function, by other techniques. The

method is easily generalized to anisotropic fields. Three of the four stationary covariance

models in TUBA use one of several spectral methods for generation of the line process

while the fourth one uses a moving average method. The non-stationary models utilize

a method proposed by Matheron [1973]. It represents polynomial generalized covari-

ances using a Brownian motion process along the lines. These line process generation

techniques are discussed in the following sections.

§§ 2.3 Spectral Line Generation Methods

All spectral methods are founded on the spectral representation theorem which states

that if f(x) is a real, 2nd order stationary, mean–zero stochastic process, then there

exists a unique complex stochastic process, Z(ω), such that f(x) can be represented by

the Fourier–Stieltjes integral

f(x) =

∫ +∞

−∞

eiωxdZf (ω). (10)

The representation presented here is for a one dimensional process, but it can be easily

generalized to multiple dimensions. The dZf (ω) represent complex Fourier amplitudes

of the fluctuations of the f(x) process; these are related to the spectrum of f(x) by

E[dZf (ω)dZ∗

f (ω′)] = 0

E[dZf (ω)dZ∗

f (ω′)] = Sf (ω)dω = dFf (ω)

ω 6= ω′

ω = ω′

(11)

where ∗ denotes complex conjugate, Sf (ω) is the spectral density function of f(x) and

Ff (ω) is the integrated spectrum or spectral distribution function. The spectrum (or

spectral density function) of a process is a frequency domain representation which de-

scribes how the variability of the process is distributed over different spatial frequencies.

Plots of the spectra and spectral distribution functions corresponding to the covariance

model equations in Table 1 are shown in Figures 3 and 4 respectively. The spectral den-

sity function is related to the covariance function, C(ξ), through the Fourier transform

relationship

S(ω) =
1

2π

∫ +∞

−∞

e−iωξC(ξ) dξ. (12)

Our interest here is in generating a unidimensional process, Z1(ζ), along each Turning

Band line that has covariance function C1(ξ). We temporarily substitute f(x) for Z1(ζ)

16

17

18

in order to avoid confusion with the dZf (ω) process. We use (12) to obtain the unidi-

mensional spectral density function, S1(ω), corresponding to C1(ξ), and then construct

the dZf (ω) process so that (11) holds. Finally, using the spectral representation theorem

(10), we generate f(x) by taking the Fourier transform of the dZf (ω) process.

The Fourier–Stieltjes integral (10) can alternately be written as

f(x) = 2Re

∫

∞

0

eiωxdZf (ω) ≈ 2Re

∫ Ω

0

eiωxdZf (ω) (13)

where the approximation on the right hand side of (13) results from integrating over

a finite number of frequencies up to some maximum frequency, Ω. To implement this

representation on the computer, we discretize the frequency domain and replace the

integral in (13) with the summation

f(x) ≈ 2Re
M−1
∑

j=0

eiωjxdZf (ωj)

where ωj = (j + 1
2)∆ω, M is the number of harmonics and ∆ω = Ω/M . Guidelines

on how to determine appropriate values for the M and Ω parameters are presented in

chapter 3. The dZf (ωj) process is constructed by setting

dZf (ωj) ≡
√

dFf (ωj) (Uj + iVj)

where the Uj and Vj are mean–zero, variance 1
2, uniformly or normally distributed

uncorrelated random variables. Taking expectations shows that (11) is satisfied:

E
[

dZf (ωj)dZ
∗

f (ωk)
]

= 0 j 6= k

E
[

dZf (ωj)dZ
∗

f (ωj)
]

= dFf (ωj)E
[

U2
j + V 2

j

]

= dFf (ωj) ≈ Sf (ωj)∆ω

Then the f(x) process can be represented approximately as

f(x) ≈ 2Re
M−1
∑

j=0

eiωjx
√

Sf (ωj)∆ω (Uj + iVj). (14)

The line process Z1(ζ) (see Figure 2) is generated using (14) with f ↔ Z and x ↔ ζ.

To take advantage of Fast Fourier Transform algorithms (FFT’s), we discretize the

space domain into even increments, ∆x, and write the generation algorithm (14) in

terms of the discrete points xk, where xk = k∆x, k = 0, 1, . . .M − 1. The Fourier

19

transformed function (those terms included in the summation in (14)) is a complex

sequence composed of real and imaginary parts. As noted by Tompson, et al [1987],

both the real and imaginary parts preserve the desired correlation structure; thus a

single Fourier transform can be used to obtain two independent realizations of the f(x)

process. In TUBA, this fact is used to advantage to reduce the computational effort

by using the real part of the transformed sequence for the odd numbered lines and the

imaginary part of the transformed sequence for the even numbered lines. Consequently,

generation of the line process on every even numbered Turning Band line progresses

quickly since the dZf (ω) sequence does not need to be constructed and transformed.

In addition, the correlation structure of the real and imaginary parts of the conjugate

process, f∗(x), defined by

f∗(x) =

∫ +∞

−∞

e−iωxdZ∗

f (ω), (15)

is statistically indistinguishable from that of the f(x) process [Tompson et al , 1987];

because the finite Fourier transform for the conjugate process (15), is computationally

cheaper than the finite Fourier transform corresponding to (10), the discrete version of

(15) is used in TUBA for generating the line processes.

The spectral method of Shinozuka and Jan [1972] is another form of (10) that does

not involve complex processes; it is also for continuous functions of space unlike the FFT

method which is restricted to discrete functions of space (see also Mantoglou and Wilson

[1982]). The Shinozuka and Jan generation algorithm is given by

f(x) = 2

M
∑

j=1

√

Sf (ωj)∆ω cos(ω′

jx + φj) (16)

where ω′

j = ωj + δω, δω = ±ε∆ω, ε� 1, φj = U[0, 2π]

and the U[0, 2π] means uniformly distributed random variable on the interval [0, 2π].

The frequencies, ωj, are perturbed slightly by δω in order to reduce the tendency of

the output to exhibit periodic behavior. The Shinozuka and Jan method is convenient

because the output is for continuous x and because there is no restrictive connection

between frequency domain and space domain parameters (see footnote p.38).

Both the FFT method and the Shinozuka and Jan method use constant frequency

spacing ∆ω; the frequency spacing is chosen so that rapid changes in the spectrum are

adequately represented. Much of the spectrum, however, is typically very smooth and

20

relatively flat (see Figure 3), thus using small frequency increments throughout results

in excess computational burden. This suggests that use of variable frequency spacing

might be advantageous. This technique has been applied to a two-dimensional Turning

Bands generator by Munoz-Pardo and Vauclin, [1987].

§§ 2.4 The Moving Average Process and The Telis Covariance

If the line process covariance function C1(ξ) can be written as a convolution product of

a function f(s) with its transpose, f̃ (s) ≡ f(−s), then the process can be generated as

a moving average process. The convolution product is defined by

C1(ξ) =

+∞
∫

−∞

f(s) f̃ (ξ − s) ds (17)

where the weighting function f(s) must be found for each covariance function C1(ξ).

In the method of moving averages, the discrete line process, Z1(ζi), is generated from

[Journel and Huijbreghts, 1978; Mantoglou and Wilson, 1981]

Z1(ζi) =
M
∑

k=−M

f(k∆s) Ti+k (18)

where ∆s is the discretization interval for the weighting function, f(s) = f(k∆s), the

Ti+k are realizations of a uniformly distributed, mean zero, uncorrelated random variable

with variance σ2
T , and M is chosen such that f(k∆s) ' 0 for k ≥ |M |. In other words,

the moving average method will be practical only if f(s) dies out with increasing s

and only if it dies out reasonably fast so that the summation on k is not excessive.

A schematic representation of the moving average process (18) is shown in Figure 5.

The discrete covariance, Cd(ξ), between any two points along Z1(ζi) is calculated

from E[Z1(ζi)Z1(ζi+ξ)] and is shown [e.g., Journel and Huijbregts, 1978] to converge

to C1(ξ). However, a bias is introduced from the discrete approximation due to the

increment size ∆s, from truncating f(s) at some smax = M∆s, and from σ2
T being

different from σ2 = C1(0). Equivalence of variances between Cd(0) and C1(0), can be

obtained through a simple correction [Journel and Huijbregts, 1978, p.536]. The other

biases are discussed in Chapter 3.

The Telis covariance model (see Table 1) arises from strictly mathematical constructs

associated with the moving average line method for two-dimensional Turning Bands, but

it has some other interesting properties that are of practical use, especially in the field of

21

22

hydrology. Mantoglou and Wilson [1981] examined the line process covariance functions

corresponding to the two-dimensional exponential and Bessel covariance models and

observed that these unidimensional covariance models closely resembled a hole function

model given by

Ch(ξ) = σ2 (1 − bξ) e−bξ . (19)

This unidimensional hole covariance model can easily be written as a convolution product

of a function f(s) and its transpose, f̃(s), where the weighting function, f(s), is given

by [Journel and Huijbregts, 1978]

f(s) =

{

2σ
√

b(1− bs)e−bs s ≥ 0

0 s < 0. (20)

Because many two-dimensional processes exhibit covariance behavior similar to the ex-

ponential or Bessel type, they reasoned that the two-dimensional covariance function

corresponding to this unidimensional hole function would also serve as a good represen-

tation of two-dimensional processes. Furthermore, through the Turning Bands transfor-

mation relating one and three-dimensional covariances [Journel and Huijbregts, 1978],

C1(ξ) = d
dξ

[ξC3(ξ)], they noted that this hole function is the one-dimensional equivalent

of the three-dimensional exponential covariance, i.e.,

Ch(ξ) =
d

dξ
[ξC3(ξ)] where C3(ξ) = σ2e−bξ.

The Telis Covariance model is the two-dimensional equivalent of the unidimensional hole

function (via (7)) and therefore also corresponds to the three-dimensional exponential

model. Mantoglou and Wilson theorized that since the exponential covariance function

is often used to describe natural three-dimensional processes, it may be appropriate to

consider the Telis function when describing two-dimensional versions of the same field

resulting from spatial averaging in the remaining direction.

In hydrology, this connection between the hole function, the Telis function, and

the exponential function in one, two, and three dimensions respectively, is of particular

interest in problems concerning the analysis of water flow through an aquifer with spa-

tially varying hydraulic conductivity. Bakr et al , [1978] found that in three dimensional

flow, an exponential log-hydraulic conductivity covariance function results in a station-

ary piezometric head field. Similarly, their one-dimensional flow model yields stationary

heads when the above hole function is used for the log-hydraulic conductivity covari-

ance. Mizell et al , [1982] studied two-dimensional flows using log-hydraulic conductivity

23

covariance models similar in form to the Telis covariance and obtained stationary heads.

This leads us naturally to pose the question: will the two-dimensional head field be sta-

tionary if the Telis function is used for the log-hydraulic conductivity covariance ? More

recently, Zimmerman et al [1987, 1988] derived the head spectrum for two-dimensional

flows using the Telis covariance model and showed, by integrating the head spectrum

over all frequencies, that the head field has a finite variance and is therefore stationary.

Thus, the Telis covariance function is again (this time on a physical rather than a math-

ematical basis) the two-dimensional equivalent of the one-dimensional hole function and

the three-dimensional exponential function. Because the Telis covariance function corre-

sponds to the one-dimensional hole function, its line process covariance can be generated

as a moving average process.

The moving average method described above, has not been widely used due to

difficulties in deriving an analytical expression for the weighting function f(s) in (7).

An alternative method for obtaining the weights has recently been proposed by Freyberg

and Black [1987] which consists of a matrix–factorization technique for deriving the

moving average coefficients. This numerical method is fast and need be performed only

once for a given covariance function and density of generation points. Furthermore, only

one input parameter is required and the method can be used to calculate the moving

average weights for any specified covariance function.

§§ 2.5 Generalized Covariances and Intrinsic Random Functions

When many realizations of a random field, Z(~x) are available, the statistical moments

(mean, variance) can be calculated at each point of the field. If the process is stationary,

it means that the moments are invariant under translation and can be estimated on the

basis of spatial rather than ensemble measurements (see section 2.1). If the field is not

stationary, it is sometimes possible to subtract the mean, m(~x), and obtain a stationary

field. For example, precipitation in an orographic region is not a stationary process due

to the trend in its mean arising from changes in elevation. But many realizations of

the rainfall process over time may be available to permit a reasonable estimation of the

m(~x) process.

In many applications, only one realization of the random field is available; for ex-

ample, the distribution of ore bodies, or of aquifer or petroleum reservoir properties.

In these cases, the assumption of stationarity is often made in order to calculate the

24

statistics of the underlying field, although this assumption is not always justified. The

theory of Intrinsic Random Functions, (IRF), described in Matheron, [1973], was devel-

oped to deal with situations in which only one realization is available and it is not known

whether the process is stationary, although it is assumed that some spatial derivative of

the process is stationary. Some basic concepts of IRF theory discussed below are taken

from Delfiner , [1978].

IRF theory is concerned with increments of Z(~x) rather than Z(~x) itself. For exam-

ple, the semi-variogram γ(~h) = 1
2 E

[

(Z(~x + ~h) − Z(~x))
2
]

of a constant mean process

does not involve the mean because the first order difference Z(~x+~h)−Z(~x) filters out

constants. When m(~x) is not constant, the idea is to consider higher order differences

leading to the notion of generalized increments. A generalized increment of order k is

defined as a linear combination
∑

i λiZ(~xi) that filters out polynomials up to degree k

(the weights λi must satisfy certain conditions). The property of being intrinsic refers

to the stationarity of the generalized increments, not to Z(~x) itself. Z(~x) is an intrinsic

random function of order k (IRF-k) if its generalized increments of order k are station-

ary; e.g., if Z(~x) is stationary, then Z(~x) is an IRF-0. An example of an IRF-k is a

random function of the form:

Z(~x) = Z0(~x) + Pk(~x)

where Z0(~x) is a mean zero random function with covariance function C(ξ)

and Pk(~x) is a kth degree polynomial function with arbitrary coefficients.

Then Z(~x) is classified as an IRF-k with a polynomial Generalized Covariance (GC)

function K(ξ), which in this simple case equals C(ξ). Not every function K(ξ) may

serve as a Generalized Covariance, but the class of admissible functions is much broader

than that of ordinary covariances. Polynomial Generalized Covariances involve only

odd powers (Table 2) because they are unique only up to an even polynomial and they

are isotropic because they depend only on the modulus |ξ| of the separation vector, ~ξ.

Polynomial GC’s are very useful because they lend themselves to easy identification.

Delfiner , [1976] believed that almost all sets of data appearing in practice can be satis-

factorily described by IRF’s of order 0, 1, or 2 with polynomial Generalized Covariances

shown in Table 2.

TUBA has been programmed for the generation of non-stationary random fields

having polynomial Generalized Covariances of the type shown in Table 2. In a manner

analgous for ordinary covariances, the line process Generalized Covariance, K1(ξ), is

25

derived [Mantoglou and Wilson , 1981] and is also of polynomial type. The line process,

Z1(ζ), is generated using the method proposed by Matheron, [1973] which is given by

Z1(ζ) = c0W (ζ) + (c1 + c2ζ)

ζ
∫

0

W (ξ) dξ − c2

ζ
∫

0

ξ W (ξ) dξ (21)

where c0, c1 and c2 are constants and W (ζ) is an IRF-0 which is generated as a Weiner

(Brownian motion) process. The integrals are calculated by discretizing along the line

between the points where the line process is generated and numerically integrating via

the trapazoidal rule. The method is fully described in Mantoglou and Wilson , [1981].

Order of IRF Generalized Covariance Model Filtered Polynomial

IRF-0 K(h) = a1h constant

IRF-1 K(h) = a1h + a3h
3 linear

IRF-2 K(h) = a1h + a3h
3 + a5h

5 quadratic

Table 2. Polynomial Generalized Covariance Models in TUBA.
After Kafritsas and Bras, [1981].

§§ 2.6 Simulation Of Areal Average Random Fields

There are often situations in which we are interested in the areal average of a stationary

point process: for example, in mining applications, we may wish to simulate average

ore grade over an area; in surface water hydrology we may be interested in the average

rainfall over an area; in groundwater hydrology or petroleum engineering we may wish to

average aquifer or reservoir properties over the cells of a finite element or finite difference

grid. The areal average process can be conceptualized by considering the process, ZA(~x)

represented by

ZA(~x) =
1

A

∫

A(~x)

Z(~x′) d~x′

where ZA(~x) is the areal average process

Z(~x) is the point process

A(~x) is the averaging area referenced by the vector ~x

and A is the area of A(~x). If the area A and its shape are the same for all ~x, Mantoglou

and Wilson [1981] derive general expressions for CA(~ξ), the areal average covariance

26

function and SA(~ω), the areal average spectral density function. These are given by

CA(~ξ) =

∫

R2

ei~ω·
~ξ|H(~ω)|2S(~ω) d~ω and SA(~ω) = |H(~ω)|2S(~ω) (22)

where S(~ω) is the two-dimensional spectral density function of the point proces and

H(~ω) is a geometric parameter that depends on the shape of the averaging area and its

relative rotation with respect to the coordinate axes. Mantoglou and Wilson derive the

characteristic function |H(~ω)|2 for some typical geometries. For rectangles

|H0(~ω)|2 =
16

L2
xL2

yω
2
1ω

2
2

sin2
(ω1Lx

2

)

sin2
(ω2Ly

2

)

(23)

where H0(~ω) represents H(~ω) for an area with no rotation, and Lx and Ly are the dimen-

sions of the averaging rectangle in the x and y directions respectively. This expression

could be used, for example, to represent uniformly sized grid blocks of a block-centered

finite difference grid. If the blocks are rotated relative to each other, H0(~ω) is related

to H(~ω) through

|H(~ω)|2 = |H0(~ωeiθ)|2 (24)

where θ is the rotation angle. |H0(~ω)|2 is also calculated for triangular averaging areas

(Appendix B of Mantoglou and Wilson , [1981]) but is not included here because it is

not programmed into TUBA. Note that even if the point process is isotropic, the areal

average process will be anisotropic due to the geometric parameter H(~ω); the exception

to this rule is when the averaging area is a circle.

The relationship between the spectra of the line processes, S1,θ(ω), (which depend

on the line orientation angle θ) and the spectrum of a two-dimensional anisotropic point

process, S(~ω), is given by [Mantoglou and Wilson , 1981]

S1,θ(ω) = πωS(~ω) = πωS(ωcosθ, ωsinθ). (25)

Thus, for areal average processes, the line process spectrum becomes

S1A,θ(ω) = πωSA(~ω) = πω|H(~ω)|2 S(~ω) (26)

where θ is the angle between the Turning Bands line and the x-axis. Then, knowing

H(~ω) and S(~ω), the areal average process can be generated with the Turning Bands

method using a spectral method for generation of the line processes.

27

§§ 2.7 Simulation Of Anisotropic Random Fields

It was stated in section 1.2 that TUBA can generate anisotropic random fields. Except

for the areal average process, the anisotropic covariance structure is limited to that of the

ellipsoidal type, i.e., where the directional correlation scales are identified by a locus of

lag vectors, ~ξ, in an ellipsoidal shape. The anisotropic covariance, C(~ξ), is transformed

to an isotropic covariance, C(ξ), with the transfomation:

ξ2 = (ξx/λx)2 + (ξy/λy)2

where the ξj’s are the x and y direction lag distances and the λj’s are the x and y

direction correlation lengths. The principal correlation scales are thus assumed to be

aligned with the coordinate axes. The simulation is then performed in this transformed

isotropic domain and is transformed back into the original coordinates on output. This

procedure avoids the complications associated with identifying a separate covariance

structure for each line process and avoids errors associated with the direct simulation of

the anisotropy [Mantoglou and Wilson , 1981; Tompson et al 1987].

28

Chapter 3

Generation of the Line Processes – Practical Aspects

The purpose of this chapter is to highlight important concepts related to the accu-

racy and efficiency of the Turning Bands method during applications. First, geometrical

considerations relavant to all the line generation methods are discussed. The type of

line generation method used depends on the covariance model chosen; the line processes

are generated using either i) a spectral method, ii) a moving average method, or

iii) a Brownian motion method proposed by Matheron [1973]. Practical aspects asso-

ciated with the computer implementation of these methods are discussed in subsequent

sections. An autoregressive (AR) line process was also investigated by Mantoglou and

Wilson [1981, p. 93]. It was the least costly method, but the resulting two-dimensional

process appeared to be of little interest. Consequently, an autoregressive line process is

not included in TUBA.

§§ 3.1 Geometrical Considerations

The line processes are generated as discrete processes (see illustration Figure 2) for

reasons of computational efficiency: if N is the number of output points in the field, then

N projections from each line will be needed for the Turning Bands algorithm. Discretizing

the line process into evenly spaced increments greatly reduces the computational effort

required to generate the line processes. The size of the discretization interval must be

chosen so that errors introduced from the discrete approximation are small. Mantoglou

and Wilson [1981] examined the effect of the line discretization distance, ∆ζ, on the

accuracy of the simulation by comparing the discrete line process covariance with the

theoretical one for values of b∆ζ ranging from 0.05 to 4. Their analysis showed very

good accuracy for b∆ζ between 0.1 and 0.05. We suggest that specifying ∆ζ = 0.06/b =

0.06λ (≈ 1
16th the correlation length) provides high accuracy without having to generate

Z1(ζ) at an excessively large number of points along the line. An additional constraint

on ∆ζ that should be satisfied when generating onto a gridded system is that ∆ζ ≤ ∆x

where ∆x is the node or cell width. This will prevent adjacent points of the random

field from receiving the same projection from the Turning Band line.

29

§§ 3.2 Spectral Generation of the Line Processes

With the exception of the moving average (Telis) and generalized non-stationary covari-

ance models, the line processes are generated by a spectral method. The spectrum of

a process is a frequency domain representation of the process which describes how the

variance is distributed among different frequencies. The variance of the process is equal

to the integral of the spectral density function over the entire frequency range. Space

domain and frequency domain parameters are inversely related, i.e., high frequencies

correspond to short range spatial fluctuations and low frequencies correspond to large

or long range spatial fluctuations. Figures 3 and 4 show the radial spectral density

functions and the spectral distribution functions respectively, for the covariance models

in TUBA. The spectral distribution functions (or integrated spectral density functions)

show how much of the spectrum is contained at frequencies less than or equal to a spec-

ified frequency. For example, the Gaussian covariance has its spectrum almost entirely

contained at frequencies less than 6 cpl (cycles per unit correlation length λ = 1/b).

Most spectral methods involve a numerical approximation of the spectrum, requiring

the user to specify the number of harmonics (M) and the maximum frequency (FMAX) for

truncation of the spectrum. If the spectrum is truncated at too low of frequency, the

high frequency components of spatial fluctuations will be lost and the variance of the

generated fields will fall short of the theoretical variance. Furthermore, the frequency

spacing, ∆k, must be fine enough to adequately approximate the behavior of the spec-

trum near the origin, otherwise, the covariance behavior at large lags will deviate from

the theoretical covariance. This is an important problem when a constant frequency

spacing is used because most of the rapid changes in the spectra of the covariance mod-

els (Figure 3) occur at low frequencies. When low frequency components of the spectrum

are poorly represented, because ∆k is too large, long range spatial fluctuations will not

yield the large lag covariance behavior of the theoretical model. These concepts are

demonstrated empirically in the following sections.

§§ 3.2.1 Tests for Determining the Effect of Spectral Approximations

TUBA 2.0 uses a constant ∆k, a finite number of harmonics, M, and a finite maximum

frequency, FMAX, all of which introduce error into the numerical approximation of the

spectrum. In order to determine the effect of the choice of the M and FMAX parameters

on the accuracy of the simulation, we examined how well the line process covariance was

preserved for different sets of M and FMAX input values. The accuracy of the simulations

was judged on the basis of how well the variance was preserved and how well the cor-

30

relation structure matched the theoretical behavior. The analyses were carried out by

generating multiple realizations of the unidimensional line process and calculating the

line process autocovariance over the ensemble of random fields.

The covariance model chosen for this analysis was the exponential model. The one-

dimensional spectral density function corresponding to the two-dimensional exponential

model is given by

S1(ω) =
σ2

2

ω/b

b[1 + ω/b]
3/2

.

The corresponding one-dimensional covariance function, C1(r), derived by Mantoglou

and Wilson [1981], is given by

C1(r) = σ2{ 1− π

2
br[I0(br) − L0(br)] }

where I0 and L0 are modified Bessel and modified Struve functions respectively, of order

zero. The theoretical C1(r) function was evaluated using equation 12.2.3 of Abramowitz

and Stegun [1964] and the Longman method [Longman, 1956] was used for evaluating

the infinite integral in that equation.

The simulations were designed so that the statistical analysis of each run was based

on random field data spanning 10,000 correlation lengths. The theoretical variance was

set equal to 1.0. Results of the sensitivity analyses are discussed in the following sections.

§§ 3.2.2 Effect Of Truncating The Spectrum

It was noted in earlier that the variance is equal to the integral of the spectrum; i.e., the

integrated spectrum (Figure 4) tells you how much of the variance you can expect to

recover when the spectrum is truncated at some finite frequency. For example, Figure 4

shows that, for the exponential model, one can expect to recover 90% of the variance

if the spectrum is truncated at a frequency of 10 cpl. This was verified by running five

cases where the maximum frequency, FMAX, was set at 5, 10, 20, 50, or 100 cpl. In each

case, ∆k was kept very small to avoid errors associated with coarse frequency spacing.

The input parameters and output field variances are shown in Table 3. The theoretical

and sample statistics show excellent agreement. Figure 4 can thus be used as a guide

for deciding where to truncate the spectrum for the Bessel and Gaussian models as well.

An example of the effect that premature truncation of the spectrum can have on the

character of the random field is illustrated in section 4.3.3.

31

Maximum Number of Frequency Spectral Sample
Frequency Harmonics Spacing Content Variance

FMAX M ∆k % σ2

5. 128 0.04 80 0.8071

10. 256 0.04 90 0.8963

20. 512 0.04 95 0.9577

50. 1024 0.05 98 0.9759
100. 2048 0.05 99 0.9982

Table 3. The effect of truncating the spectrum at finite frequencies on
the variance of the random fields. (Theoretical variance = 1.0)

§§ 3.2.3 Effect of Discretizing the Spectrum

Based on the theoretical and experimental results (Table 3) of the previous section, the

choice of FMAX=100 was deemed sufficient for preserving the variance of the process. In

these experiments, FMAX was maintained at 100 cpl while the frequency spacing, ∆k,

varied from 0.05 to 1.0 cpl. The results from these runs are plotted in Figure 6 and

demonstrate how the large lag covariance behavior deviates from the theoretical model

when ∆k is too large. Based on these results and the graphs in Figure 4, it is suggested

that ∆k=0.1 or less is sufficiently small for the Gaussian model, while ∆k=0.02 or less

may be necessary for the Bessel model.

These results are summarized in Table 4. The M and FMAX parameters for the Shi-

nozuka and Jan method (Table 4b) are set at their minimum required values in accor-

dance with the preceding sensitivity analysis; the FFT parameters (Table 4a) must be

specified such that the proper ∆k and the minimum ∆ζ are maintained (see section 3.1

and the footnote at the bottom of page 38).

32

Turning Band exponential Gaussian Bessel
parameter model model model

FMAX 100 100 100

∆ζ 0.06λ 0.06λ 0.06λ
M 2048 1024 4096

∆k 0.05 0.10 0.02

Table 4a. Spectral parameters for generating the line pro-
cesses via the Fast Fourier Transform method.

Turning Band exponential Gaussian Bessel
parameter model model model

FMAX 100 6 10

∆ζ arbitrary arbitrary arbitrary

M 2000 60 500

∆k 0.05 0.10 0.02

Table 4b. Spectral parameters for generating the line pro-
cesses via the method of Shinozuka and Jan.

Figure 6. The effect of frequency spacing, ∆k, on the correlation structure of
the line process. Solid line is the theoretical covariance function for
the exponential model.

33

§§ 3.3 Moving Average Generation of the Line Process

The moving average method was discussed in section 2.4 and is illustrated in Figure 5.

Assuming that the line process discretization distance ∆ζ is chosen sufficiently small

to adequately represent the line process covariance behavior (section 3.1), the question

that remains is how small to make ∆s and how big to make M? The weighting func-

tion f(s) (equation (20)) is a decaying exponential function which is, for all practical

purposes, zero for s ≥ 5/b = 5λ for the hole function equivalent to the Telis covariance

function (see Figure 7) The appropriate choice for ∆s was determined by: choosing

a ∆s, generating a multitude of random fields (the 1D line process), calculating the

autocovariance over the ensemble of realizations, and comparing that result with the

theoretical covariance (equation (19)); this process was repeated using different ∆s’s

until the discrete covariance matched the theoretical covariance. Based on the results

of these tests (shown in Figure 7), it is seen that the discretization interval for the hole

function moving average process should be approximately 0.05/b = 0.05λ or less, or

about 1/20th of the correlation length.

Figure 7. Effect of discretization interval DS on the correlation structure of the line process.
Thick solid line is the hole function covariance model, Equation (19).

34

Chapter 4

User’s Manual

This chapter focuses on implementation and application of the TUBA computer

program. The objectives of this chapter are to discuss what and how input data to the

code are handled, to provide general guidelines to assist the user in selecting a consistent

set of input values, and to illustrate how to run the program. Numerous examples are

given to demonstrate the versatility of the code and to illustrate the variability in the

character of the generated random fields. Included are some examples relating to the

discussion on estimating random field statistics (section 2.1.2) and on the practical

aspects of line generation (chapter 3).

§§ 4.1 Code Input Description

Input to TUBA is handled by querying for i) output field parameters, ii) covariance

model parameters, iii) Turning Band parameters, iv) output file parameters, and v) sim-

ulation parameters in that order. Field parameters refer to the geometry and resolution

of the field being simulated. Covariance model parameters specify the choice of covari-

ance model to be used, the desired mean and variance, etc. Turning Band parameters

refer to control parameters for the Turning Bands method such as the number of Turning

Band lines. Output file parameters control how the data is written to the output files.

Simulation parameters determine how many realizations will be produced etc. Guide-

lines on how to choose these input parameters are presented in the following sections.

§§ 4.1.1 Output Field Parameters

The random fields may be generated at arbitrary points in space, such as the nodal

points or Gauss points of a finite element grid, or onto the grid points of a regularly-

spaced or irregularly-spaced finite difference grid. The grid may be a point or a block

centered grid, the difference being whether the coordinate origin is at the center of the

first nodal block (cell) or at the lower left hand corner of the cell. For gridded output,

an optional “mask file” can be used; the mask file is a matrix (the same size as the

output grid) containing zero and non-zero values. Typically, only 1’s and 0’s are used,

although any zero and non-zero values will work. An exact zero tells TUBA to skip the

random field calculations for that grid point, while a non-zero value means yes, generate

a random field value here (see section 4.3.2).

35

If generating at arbitrary points in space, TUBA must read the ~x = (x, y) coordinate

locations at which to generate values of the random field. TUBA asks for the name of

the file containing the (x, y) data and reads the coordinate pairs using a free format

read statement (READ(LU,*)). It is best to simply place one (x, y) coordinate pair per

line in the input file. TUBA automatically counts the number of pairs read and reports

this number to the screen.

If generating onto a uniform grid, TUBA asks for the dimensions of the rectangular

region and the number of nodes or cells in the x and y directions. TUBA uses the output

field dimensions (length units) and the grid dimensions (nodes or cells) to calculate the

grid spacing, ∆x. The lower left hand corner of the output field (in plan view) is placed

at the origin of the coordinate system. Thus, for point centered grids the coordinates of

the first node will be (0., 0.) whereas for block centered grids it will be (∆x
2 , ∆y

2).

In order to adequately preserve the desired statistics (mean, variance) in a single

realization, the size of the field should be large relative to the correlation scale (see

section 2.1.2), on the order of 20 or more correlation lengths. A common mistake is to

generate fields with only a few correlation lengths, obtain biased statistics, and conclude

that there is a coding error. The bias occurs because the sample size is too small

for meaningful single-realization statistical analysis. This is clearly demonstrated by

generating hundreds of these small domains, and accumulating the statistics over them;

the ensemble statistics will preserve the desired target statistics.

The grid spacing, ∆x, should also be small relative to the correlation length, or the

resulting generated process will be smoother than the true process, and statistical tests

will show that the higher frequency components will not be preserved.

The random field, f(~x), can be generated as a normally or log-normally distributed

process; i.e., TUBA provides the option of exponentiating the generated field as 10f(~x)

or exp{f(~x)} to generate the log-normal field. Other user desired transformations can

be handled via post-processing.

§§ 4.1.2 Covariance Model Parameters

TUBA asks the user to choose from a selection of five covariance functions: the i) expo-

nential, ii) Gaussian, iii) Bessel, iv) Telis, and v) Generalized non-stationary covariance

models. In addition, a user-specified stationary covariance model can be input (see sec-

tion 5.4). Covariance plots for the first four of these models are shown in Figure 1. For

stationary fields, TUBA queries for the desired mean and variance of the random field;

these values must always be specified for the normally distributed process. For example,

36

if you wish to generate a log-normal process, e.g., a hydraulic conductivity field with a

mean of 100 millidarcies, then you would input the desired mean equal to 2 and specify

base 10 exponentiation.

Each stationary covariance model has two correlation scale parameters, the x and y

correlation lengths which represent the average distance over which the field variables

are significantly correlated in the x and y directions. Recall that (section 2.1.1) the

“correlation length” refers to the parameter λ = 1/b in the covariance model equations

(Table 1). The correlation lengths should be specified such that there is sufficient reso-

lution to capture the covariance behavior of the process; we recommend using at least

10 output points per correlation length (see section 4.3.2). To generate isotropic ran-

dom fields the x and y direction correlation lengths should be equal; for an x :y = 5:1

anisotropic correlation structure, the x -direction correlation length should be five times

larger than the y-direction correlation length and so on.

For non-stationary fields, TUBA queries for the coefficients to the generalized co-

variance function K(r) = a1r + a3r
3 + a5r

5. Generalized covariances are discussed in

section 2.5 and example fields are shown later in this chapter.

§§ 4.1.3 Turning Band Parameters

Turning Band parameters control the way in which the line processes are generated. If

the line processes are not properly generated, the two-dimensional field will not exhibit

the desired covariance behavior. Carefully following the guidelines presented here should

result in random fields possessing the proper statistical behavior.

TUBA has a convenient option which relieves the user of the burden of figuring out

what values to input for these parameters; i.e., the Turning Band parameters can be

calculated internally and automatically by TUBA. It may be best to use this default

option rather than risk inputting inappropriate values (see section 4.3.5). The remainder

of this section concerns the manual entry of the Turning Band parameters.

TUBA queries the user for the number of the Turning Bands lines. Based on a

sensitivity analysis of covariance convergence to the number of Turning Bands lines

described in Mantoglou and Wilson, [1981], we recommend using at least 16 lines.

TUBA queries for the line process discretization distance. Because the line processes

are discrete processes, the discretization distance along the lines must be specified and

must be chosen so that errors introduced from the discrete approximation are small.

Mantoglou and Wilson [1981, 1982] examined the effect of the discretization distance,

∆ζ, along the Turning Band lines on the accuracy of the simulation and concluded

37

that ∆ζ should be no larger than 0.1λ where λ is the correlation length. Based on

the analyses in that report and our own experience, we recommend using ∆ζ = 0.06λ

(approximately 16 points/correlation length).

For the exponential, Gaussian, and Bessel covariance functions, the line processes are

generated using a spectral method; if the default Turning Band parameters are used, the

line processes are generated using the Fast Fourier Transform (FFT) method, otherwise

the much slower method of Shinozuka and Jan [1972] is used. This is because certain

parameters would be overspecified if the FFT method were used†. Two parameters

control the way in which the spectrum is approximated: these are FMAX=the maximum

frequency at which the spectrum is truncated, and M=the number of harmonics into

which the spectrum is discretized. The constant frequency spacing, ∆k, is determined

by ∆k = FMAX/M. The recommended minimum M and FMAX values for each covariance

model is shown in Table 4 which was developed from the sensitivity analyses discussed

in section 3.2.

If the Telis covariance model is chosen, the line processes are generated via a moving

average method. Here the discretization distance, ∆s, for the weighting function f(s)

and the white noise process T is needed (see Figure 5). Based on the analysis described

in section 3.3, this discretization distance should be set no larger than ∆s = 0.05λ.

If a user specified covariance model is input, the user will have to determine the

optimum M and FMAX parameters for the corresponding spectral density function if a

spectral method is used to generate the line processes or the optimum ∆s value if a

moving average method is used to generate the line processes.

Finally, for non-stationary intrinsic random fields of order one or two, the discreti-

aztion distance, ∆W , for the Weiner process is required. This discretization interval is

needed for numerically approximating the integrals shown in equation (21). The size of

∆W required for proper generation on the intrinsic line process was not determined in

the same manner that the discretization parameters for the other line generation meth-

ods were found. When the default Turning Band parameters are chosen, TUBA sets

∆W = 0.2∆ζ where ∆ζ is the Turning Bands line discretization distance.

† With the FFT method, the line process discretization interval, ∆ζ , is related to the maximum
frequency, FMAX, by ∆ζ ≡ 2π/FMAX. When the Turning Band parameters are entered manually, ∆ζ
and FMAX are set independently. With the method of Shinozuka and Jan, there is no connection between
∆ζ and FMAX, thus, these parameters can be set independently. Under certain conditions, however,
the FFT method will be used when entering the Turning Band parameters manually; see the footnote
under section 4.2.4.

38

§§ 4.1.4 Output File Parameters

TUBA asks for the filename for writing the data to; if multiple realizations are being

generated, each output field is written to a separate file, the file extension is stripped

off and replaced with the simulation number. For example, if the name FIELD.DAT is

given and three realizations are to be generated, the output files will be named FIELD.1,

FIELD.2, and FIELD.3. Alternatively, all realizations may be written to a single output file.

The data may be written out formatted or unformatted—unformatted is recom-

mended for large output files because the I/O is faster, unformatted data files take up

less space on the disk, and “manual data analysis” (looking at a file full of numbers) is

generally not an efficient way to examine the data. Variogram analysis, spectral anal-

ysis, or simply plotting the data as a contour or shaded relief map are more powerful

methods for examining the behavior of the random fields.

If you are generating field values at arbitrary locations in space, the output may

be configured to print only the field values (i.e., to exclude reflecting the coordinate

locations which already reside in a file that is read as input). For gridded output,

TUBA asks whether the data should be written out “with a single write statement” or

“one line at a time.” The single write statement option means the entire random field is

written using one Fortran WRITE statement. For formatted output, we recommend using

the “one line at a time” option; for unformatted output, either option is acceptable,

depending on how the data are to be read by other post–processing programs.

If the gridded data are to be formatted and written out line by line, there is an

option to have it write out the rows beginning with the last row and ending with the

first; this way the data will appear on the page “in plan view”, i.e., with the origin at

the lower left and the last row on top. This option is intended for use with small data

sets where the entire grid will fit onto a single page. An example where this option is

invoked is shown in section 4.2.5.

§§ 4.1.5 Simulation Parameters

Multiple realizations of the random field can be generated as desired; TUBA queries for

the number of realizations to be simulated. If more than one realization is produced,

the data will be written to the output file or files using the same format each time.

Two different random number generators have been included in TUBA: For most

applications, we recommend using the algorithm of Marsaglia and Bray [Dudewicz and

Rally, 1981]. However, all of the examples in this manual were run using the other

39

generator [Swain and Swain, 1980] because it is a machine independent random number

generator and thus will allow the results shown here to be duplicated on different ma-

chines. Both generators need an integer seed (positive number) to initialize the sequence

of random numbers. For the Swain and Swain generator, the seed must be composed

of eight digits. No such restriction is imposed by the Marsaglia and Bray generator.

The latter generator involves multiplications of large integers which results in integer

overflow conditions (the product is a number which is too large to store in an integer

word). For this reason, TUBA must be compiled with the integer overflow check turned

off (depending on the Fortran compiler, see section 5.3).

§§ 4.2 Example Runs – Input, Output, and Analysis

Sample problems which exercise all of the options in TUBA are illustrated in the fol-

lowing sections. The objective of this section is to show how to set up and run the

program in batch mode and to illustrate what the user will see when running TUBA

interactively at the computer terminal. The output files are analysed by computing

their sample statistics (mean and variance), producing shaded contour maps, and by

calculating variograms or estimating their spectral properties.

Because the sequence of questions is identical for many of these examples, the in-

teractive session is illustrated only once, for the most common case of generating a

stationary random field onto a regular grid. In (almost) all of the other cases, the input

values used to generate the fields are shown. With a few exceptions, all of these runs

are made by using the default Turning Bands parameters. In addition, all of these runs

are made with the machine independent random number generator to enable the user

to duplicate these results within the limits of machine round off error.

During execution of the program, TUBA reports certain information to the screen

concerning its progress in the sequence of computations; this is useful when running

TUBA interactively. Prior to generating the line processes, TUBA must calculate the

projections from every point in the field onto each Turning Band line; this task consti-

tutes a significant portion of the overall computation time and therefore its computation

progress is listed†.
Also prior to the line generation computations, certain line process array data is

calculated when the spectral method is used to generate the line processes. These

† For very large fields (say greater than 500,000 nodes) it may be better to generate multiple realiza-
tions in one run if more than one realization will eventually be needed, since the projection calculations
need only be done once in a multiple simulation run.

40

calculations proceed rapidly (except when areal averaging is used) but computation

progress is listed anyway in order to show the number of harmonics used along each

Turning Band line. The number of harmonics listed may differ from the values shown in

Table 3 in order to satisfy the constraints of a particular simulation (see section 4.2.6).

During generation of the line processes, progress as to which Turning Band line is being

generated is reported to the screen. If the FFT spectral method is used to generate

the line processes, the even numbered lines will be generated much faster than the odd

numbered lines; the reason for this is explained in section 2.3.

Reflection of Input Parameters

Because TUBA was written primarily for interactive use, it does not ask for input pa-

rameters it will not need, i.e., the number of “cards” (input lines of control variables) will

vary from simulation to simulation depending on which options are invoked. Therefore,

as a convenience to the user, TUBA automatically generates an input file “on the fly”

that can later be used for batch processing. The file has the same name as the output

data file but a different extension, e.g., if the output file is named FIELD.DAT, the newly

created input file is named FIELD.INP. This provides a convenient means of keeping

an accurate record of the input and establishing a “template” control file that can be

edited and used for subsequent batch or interactive runs. On operating systems that

use redirection sysbols (<,>), TUBA can be run in “batch-interactive” mode by typing

“TUBA < FIELD.INP” at the command prompt; TUBA will then read all input data

from the file FIELD.INP instead of the keyboard.

Reflection of Turning Band Parameters

In addition to listing the input parameters used to create the field, this file lists out

some internal parameters which may be important for regenerating the field or portions

of it (see section 4.2.6), and lists the sample statistics of the realization(s). The sample

statistics are always calculated before exponentiation occurs (in cases where log-normal

fields are generated). Ensemble statistics are also listed when multiple realizations are

generated. The appearance of the fields and their sample statistics will be affected by the

size and resolution of the grid onto which they are generated. Therefore, TUBA also lists

out (for the stationary models only) the number of output points/correlation length used

(as determined by the geometrical input variables) and an approximation of the number

of independent samples the the field represents. This may help to provide a clue as to why

the sample statistics deviate from their theoretical values (see sections 2.1 and 4.3.1).

41

Comparison of Gridded Fields

In the examples that follow, these <NAME>.INP files are shown exactly as they appear

on output (for TUBA version 2.0). Incidentally, all input data (real or integer) are read

with a free format (READ(LU,*)) read statement, so that no formatting of input values

into specific columns of the batch input file is necessary.

In the examples involving gridded output, the size of the output grid is 100 x 100

nodes. For stationary fields, the correlation lengths are specified so that all of the

correlation functions drop to e−1 at the same lag or separation. This was done to better

enable a visual comparison of the correlative properties of the fields generated with these

different covariance models (see section 2.1.1). At a lag distance of ξ = λ = λe, both

the exponential, ρe(ξ), and Gaussian, ρG(ξ), correlation functions drop to e−1. For the

Bessel, ρB(ξ), and Telis, ρT (ξ), correlation functions, the separation distances at which

this condition is reached is 1.65λ and 0.75λ respectively. Thus, if the correlation length

for the exponential and Gaussian models is specified as λ, the correlation lengths for

the Bessel and Telis models must be given as λ
1.65 and λ

0.75 respectively, in order that

ρB(λ
1.65) = ρT (λ

0.75) = ρe(λ) = ρG(λ) = e−1.

Shaded contour maps of the generated random fields were produced in order to il-

lustrate the character of the spatial variability patterns. These maps were generated by

normalizing the field values into “levels” corresponding to their relative deviation from

the sample mean and assigning a shade pattern to each level (dark = low (below mean)

value, white = high (above mean) value). The plots show eight shading levels (equally

spaced from −3 to +3 standard deviations about the mean). Although the generated

fields appear to be discrete, because of the stair steps of the shade patterns used here,

they are in fact continuous. Smooth contouring of previous TUBA fields are shown in

Mantoglou and Wilson [1981, 1982].

§§ 4.2.1 Generation of Stationary Isotropic Random Fields

Random fields corresponding to each of the four stationary covariance functions shown in

Figure 1 and Table 1 are generated in this section. The interactive session is illustrated

only for the Gaussian covariance model; the contents of the <NAME>.INP output files

showing the input parameters used precedes the plot of each field. The user’s responses

to the questions are reflected back to the screen (preceeded by *****) in order to verify

the input, particularly for batch runs. The generated fields are plotted in Figures 8

through 11 and variogram estimates of these fields are plotted in Figure 12. These

results are discussed at the end of this section.

42

Interactive Session For Gaussian Covariance Model

++++++++++++++++ Program "TUBA" ++++++++++++++++

A Code For Simulating 2D Random Fields

Via The Turning Bands Method

++++++++++++ OUTPUT FIELD PARAMETERS ++++++++++++

(1) - Simulate Only At Specified (x,y) Coordinates

(2) - Simulate Onto The Nodes Of A Rectangular Grid

***** 2

(1) - Point Centered Grid

(2) - Block Centered Grid

***** 2

Enter The Maximum X And Y Field Dimensions

***** 100.0000 100.0000

Enter The Number Of Nodes In The X And Y Directions

***** 100 100

Enter The Mask Filename or Type NONE

***** NONE

(1) - Generate a Field f(x) Whose pdf is Normal

(2) - Generate a Lognormal Field K(x) = exp(f(x))

(3) - Generate a Lognormal Field K(x) = 10**(f(x))

***** 1

++++++++++++ COVARIANCE PARAMETERS ++++++++++++

Select Type Of Covariance Model:

(0) - User Specified

(1) - Exponential Model

(2) - Gaussian Covariance

(3) - Bessel Type Covariance

(4) - Telis Covariance Function

(5) - Generalized Covariance Model

***** 2

Enter Desired Mean And Variance

***** 0.0000000E+00 1.000000

Enter The X and Y Direction Correlation Lengths

Make These Equal For Isotropic Fields

***** 20.00000 20.00000

++++++++++++ TURNING BANDS PARAMETERS ++++++++++++

(1) - Use Default Turning Band Parameters

(2) - Enter The TBM Parameters Manually

***** 1

43

+++++++++++++ OUTPUT FILE PARAMETERS +++++++++++++

Enter A Filename For The Output File(s)

***** GAUSS1.DAT

(1) - Unformatted Output

(2) - Formatted Output

***** 1

(1) - Write Out Matrix With One WRITE Statement

(2) - Write Out Matrix One Line (Row) At A Time

***** 2

+++++++++++++ SIMULATION PARAMETERS ++++++++++++++

(1) - Marsaglia and Bray Random Number Generator

(2) - Machine Independent Random Number Generator

***** 2

Enter An Integer Seed To Initialize The Generator

Seed For This Generator Must Be 8 Digits Long

***** 76651594

Enter The Number Of Realizations To Be Simulated

***** 1

Number Of Elements Allocated In A Array = 4999000

Total Storage Required For Computations = 208945

Calculating Projections ... Point No 500 ... (5.0 %)
Calculating Projections ... Point No 1000 ... (10.0 %)
Calculating Projections ... Point No 1500 ... (15.0 %)
Calculating Projections ... Point No 2000 ... (20.0 %)
Calculating Projections ... Point No 2500 ... (25.0 %)
Calculating Projections ... Point No 3000 ... (30.0 %)
Calculating Projections ... Point No 3500 ... (35.0 %)
Calculating Projections ... Point No 4000 ... (40.0 %)
Calculating Projections ... Point No 4500 ... (45.0 %)
Calculating Projections ... Point No 5000 ... (50.0 %)
Calculating Projections ... Point No 5500 ... (55.0 %)
Calculating Projections ... Point No 6000 ... (60.0 %)
Calculating Projections ... Point No 6500 ... (65.0 %)
Calculating Projections ... Point No 7000 ... (70.0 %)
Calculating Projections ... Point No 7500 ... (75.0 %)
Calculating Projections ... Point No 8000 ... (80.0 %)
Calculating Projections ... Point No 8500 ... (85.0 %)
Calculating Projections ... Point No 9000 ... (90.0 %)
Calculating Projections ... Point No 9500 ... (95.0 %)
Calculating Projections ... Point No 10000 ... (99.9 %)

Line Process Array Data ... Harmonic 103 ... (5.0 %)
Line Process Array Data ... Harmonic 205 ... (10.0 %)
Line Process Array Data ... Harmonic 308 ... (15.0 %)
Line Process Array Data ... Harmonic 410 ... (20.0 %)
Line Process Array Data ... Harmonic 512 ... (25.0 %)
Line Process Array Data ... Harmonic 615 ... (30.0 %)
Line Process Array Data ... Harmonic 717 ... (35.0 %)
Line Process Array Data ... Harmonic 820 ... (40.0 %)
Line Process Array Data ... Harmonic 922 ... (45.0 %)
Line Process Array Data ... Harmonic 1024 ... (50.0 %)
Line Process Array Data ... Harmonic 1127 ... (55.0 %)
Line Process Array Data ... Harmonic 1229 ... (60.0 %)
Line Process Array Data ... Harmonic 1332 ... (65.0 %)
Line Process Array Data ... Harmonic 1434 ... (70.0 %)

44

Line Process Array Data ... Harmonic 1536 ... (75.0 %)
Line Process Array Data ... Harmonic 1639 ... (80.0 %)
Line Process Array Data ... Harmonic 1741 ... (85.0 %)
Line Process Array Data ... Harmonic 1844 ... (90.0 %)
Line Process Array Data ... Harmonic 1946 ... (95.0 %)
Line Process Array Data ... Harmonic 2048 ... (99.9 %)

Simulation 1 Turning Band Line 1
Simulation 1 Turning Band Line 2
Simulation 1 Turning Band Line 3
Simulation 1 Turning Band Line 4
Simulation 1 Turning Band Line 5
Simulation 1 Turning Band Line 6
Simulation 1 Turning Band Line 7
Simulation 1 Turning Band Line 8
Simulation 1 Turning Band Line 9
Simulation 1 Turning Band Line 10
Simulation 1 Turning Band Line 11
Simulation 1 Turning Band Line 12
Simulation 1 Turning Band Line 13
Simulation 1 Turning Band Line 14
Simulation 1 Turning Band Line 15
Simulation 1 Turning Band Line 16

Output Filename = GAUSS1.DAT
The Sample Mean = -0.19667E+00
Sample Variance = 0.10864E+01

Discussion of Results

The input files and plots of the output fields for the four stationary covariance models are

shown on the following pages. The most obvious result of these simulations is the marked

differences in the appearance of these random fields. Note that the fields generated with

the exponential and Telis covariance functions are extremely “busy” compared to the

Bessel (reasonably smooth transitions among neighboring values) and the Gaussian (very

smooth) random fields. These differences can be explained via the integral scale analysis

(section 2.1.1) or by examining the spectral distribution functions of these covariance

models (Figure 4). The spectra of the exponential and Telis covariance models contain

a great deal more high frequency information than the Bessel and Gaussian covariance

models. In other words, when the spectrum encompasses high frequencies, there will be

rapid spatial fluctuations over short distances as evidenced by these plots. The Gaussian

model, which has its entire spectrum contained at frequencies considerably less than the

other models, shows correspondingly fewer short range fluctuations and appears much

smoother. This concept is illustrated further in section 4.3.3.

Figure 12 shows the theoretical and discrete variograms calculated for these random

fields; although there is some scatter about the theoretical lines due to the limited

sample size, these results show good agreement, indicating that TUBA preserves the

desired correlation structure. The sample mean and variance statistics however, deviate

markedly from their target values; the reason for this is explained in section 4.3.1.

45

Input Parameters For Gaussian Covariance Model [GAUSS1.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
2 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

0.0000 1.0000 Desired Mean and Variance
20.0000 20.0000 X and Y Direction Correlation Lengths

1 1=Default TBM Parameters, 2=Enter Manually
GAUSS1.DAT Output Data Filename

1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

76651594 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = 0.0000 0.0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Maximum Frequency for the Spectrum = 125.6637
! Number of Harmonics for the Spectrum = 2048
! Frequency Spacing in Spectral Domain = 0.0614
! Spatial Discretizations, DELX & DELY = 1.0000 1.0000
! No Pnts/correlation Length in X,Y Dir = 20.0 20.0
! Approx Number of Independent Samples = 6.2
! The Sample Mean = -0.1967
! Sample Variance = 1.0864

Figure 8. Random field generated using a Gaussian covariance model.

46

Input Parameters For Bessel Covariance Model [BESL1.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
3 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
12.0000 12.0000 X and Y Direction Correlation Lengths ←−λ = λe

1.65
1 1=Default TBM Parameters, 2=Enter Manually

BESL1.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

57632319 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = .7500
! Maximum Frequency for the Spectrum = 100.5310
! Number of Harmonics for the Spectrum = 4096
! Frequency Spacing in Spectral Domain = .0245
! Spatial Discretizations, DELX & DELY = 1.0 1.0
! No Pnts/correlation Length in X,Y Dir = 12.0 12.0
! Approx Number of Independent Samples = 17.4
! The Sample Mean = -.9622
! Sample Variance = .7489

Figure 9. Random field generated using an Bessel covariance model.

47

Input Parameters For Exponential Covariance Model [EXPO1.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

0.0000 1.0000 Desired Mean and Variance
20.0000 20.0000 X and Y Direction Correlation Lengths

1 1=Point Process, 2=Areal Average Process ←−see sec 4.2.4
1 1=Default TBM Parameters, 2=Enter Manually

EXPO1.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
1 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

57756341 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Maximum Frequency for the Spectrum = 125.6637
! Number of Harmonics for the Spectrum = 4096
! Frequency Spacing in Spectral Domain = .0307
! Spatial Discretizations, DELX & DELY = 1.0 1.0
! No Pnts/correlation Length in X,Y Dir = 20.0 20.0
! Approx Number of Independent Samples = 6.3
! The Sample Mean = -.1282
! Sample Variance = .7995

Figure 10. Random field generated using an exponential covariance model.

48

Input Parameters For Telis Covariance Model [TELIS1.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
4 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
27.0000 27.0000 X and Y Direction Correlation Lengths ←−λ = λe

0.75
1 1=Default TBM Parameters, 2=Enter Manually

TELIS1.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

76548921 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Discretization Dstnce for MA Process = 1.0000
! Number of Output Pnts Along the Line = 142
! Spatial Discretizations, DELX & DELY = 1.0 1.0
! No Pnts/correlation Length in X,Y Dir = 27.0 27.0
! Approx Number of Independent Samples = 3.4
! The Sample Mean = -.3297
! Sample Variance = .6816

Figure 11. Random field generated using a Telis covariance model.

49

50

§§ 4.2.2 Generation of Anisotropic Random Fields

It was noted in section 2.7 that anisotropic random fields of the ellipsoidal type are

generated via coordinate transformations. The input control stream for generating a

Gaussian random field having an x:y = 5:1 anisotropic correlation structure is shown

above Figure 14. All that is required is to specify the x and y direction correlation

lengths proportional to the anisotropy.

Directional variogram estimates of the output field are shown in Figure 13. The

Variogram plots show that the sill is reached at approximately (.8)(60) = 48 units in

the horizontal direction and (.15)(60) = 9 units in the vertical direction; this analysis

reflects the desired 5:1 ratio for the horizontal to vertical anisotropy. The field is plotted

in Figure 14 and clearly shows its anisotropic character.

Figure 13. Directional variogram estimates for anisotropic Gaussian field.

51

Input Parameters For Anisotropic Gaussian Field [GAUSS2.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
2 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
35.0000 7.0000 X and Y Direction Correlation Lengths ←−anisotropy

1 1=Default TBM Parameters, 2=Enter Manually
GAUSS2.DAT Output Data Filename

1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

84756542 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = .2000
! Maximum Frequency for the Spectrum = 219.9115
! Number of Harmonics for the Spectrum = 4096
! Frequency Spacing in Spectral Domain = .0537
! Spatial Discretizations, DELX & DELY = 1.0 1.0
! No Pnts/correlation Length in X,Y Dir = 35.0 7.0
! Approx Number of Independent Samples = 10.2
! The Sample Mean = .5460
! Sample Variance = .7596

Figure 14. Anisotropic field generated using a Gaussian covarance model.

52

§§ 4.2.3 Generation of Non-stationary Random Fields

In this section we generate three non-staionary random fields: an IRF-0, an IRF-1,

and an IRF-2 (see section 2.5). The fields are generated onto a block-centered finite

difference grid as before and the results are plotted in Figures 15 through 17. The input

files used to generate these fields are shown just above those figures. Note that the same

random number generator seed is used for all three fields; only the order of the intrinsic

random field (as determined by the Generalized Covariance model coefficients) changes

from one simulation to the next. Also, note that the mean and variance statistics are

not calculated for these random fields because the mean is not constant and the variance

never reaches a sill.

Discussion of Results

Notice that the spatial variability patterns in the intrinsic random fields depicted in

Figures 15 through 17 progress from more noisy to less noisy as the order of the IRF

increases. This is because the higher-order fields filter out higher-order polynomial trends

(see section 2.5 and Table 2).

Each of these fields were analysed using AKRIP (Kafritsas and Bras, [1984]); AKRIP

is a computer code for spatial structure analysis and kriging in two-dimensions using

Intrinsic Random Field theory. Approximately 100 sample points were taken randomly

from each output file and used as input to AKRIP. Both the order of the intrinsic random

field and the Generalized Covariance model coefficients were estimated by AKRIP and

found to be in agreement with the parameters used to generate the fields with TUBA.

53

Input File for Intrinsic Random Field of Order Zero [GC-0.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
5 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

1.000 .000 .000 Generalized Covariance Model Coefficients
1 1=Default TBM Parameters, 2=Enter Manually

GC-0.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

28104199 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Discretization Dstnce for IRF Models = .2500
! Spatial Discretizations, DELX & DELY = 1.0 1.0

Figure 15. Random field generated using a Generalized Covariance
model for an Intrinsic Random Field of Order 0 (IRF-0).

54

Input File for Intrinsic Random Field of Order One [GC-1.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
5 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.000 1.000 .000 Generalized Covariance Model Coefficients
1 1=Default TBM Parameters, 2=Enter Manually

GC-1.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

28104199 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Discretization Dstnce for IRF Models = .2500
! Spatial Discretizations, DELX & DELY = 1.0 1.0

Figure 16. Random field generated using a Generalized Covariance
model for an Intrinsic Random Field of Order 1 (IRF-1).

55

Input File for Intrinsic Random Field of Order Two [GC-2.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
5 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.000 .000 1.000 Generalized Covariance Model Coefficients
1 1=Default TBM Parameters, 2=Enter Manually

GC-2.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

28104199 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Discretization Dstnce for IRF Models = .2500
! Spatial Discretizations, DELX & DELY = 1.0 1.0

Figure 17. Random field generated using a Generalized Covariance
model for an Intrinsic Random Field of Order 2 (IRF-2).

56

§§ 4.2.4 Generation of Areal Average Random Fields

In this section we generate areal average random fields for different size rectangular

averaging areas (see section 2.6) to illustrate the smoothing effect that averaging has.

This option is available only for the exponential covariance model (although it could

be programmed in for the other models as well) and we use for comparison, the expo-

nential field generated in section 4.2.1 (Figure 10). Two areal average random fields

are generated here; the only difference between the input control streams of these files

and the one in section 4.2.1 is the size of the averaging area: The field generated in

section 4.2.1 was specified as a “point process” (i.e., no averaging) whereas these fields

use areal averaging where the averaging area is a square region whose sides are of length

0.25λ and 1.0λ where λ is the correlation length of the process. The input for these

fields are shown above the resulting fields which are plotted in Figures 18 and 19.

Discussion of Results

Figures 18 and 19 illustrate the smoothing effect of larger and larger averaging areas;

these should be compared with Figure 10, the same field with no averaging. It should

be understood that these figures illustrate moving areal averages where the averaging

areas are permitted to overlap each other as the rectangular averaging window slides

along from point to point in the random field.

In practical applications, one may want to use areal averaging as a means of repre-

senting material properties which remain uniform within the blocks of a finite difference

grid; in this case no overlapping of the averaging areas would occur. To illustrate the

spatial variability patterns this type of system would exhibit, we generate the same

field again using averaging rectangles of size 0.25λ, but generate at fewer locations (a

coarser grid) so that the averaging rectangles do not overlap. The input file for this case†
is shown just above the plotted result, Figure 20.

†Manual entry of the Turning Band parameters was required for this case in order to match
the parameter values shown at the bottom of the EXPO2.INP and EXPO3.INP list files. This is because
only 2048 harmonics would have be required to generate the field onto the smaller 20 by 20 grid; had
the default Turning Band parameters been used, a field would have been generated having the proper
statistics, but the spatial variability patterns would not correspond to the other examples in this section
because they required 4096 harmonics for the line process.

What is not apparent from this example is that the FFT line generation method was used even
though the Turning Band parameters were entered manually. This is because TUBA checks to see if the
user specified number of harmonics = 2n for some n; if it is, TUBA uses the much faster FFT method
rather than the method of Shinozuka and Jan. If the number of harmonics were input as 4095 or 4097,
essentially the same results would be obtained but at much greater computational expense.

57

Input Data for Areal Average Field [EXPO2.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
20.0000 20.0000 X and Y Direction Correlation Lengths

2 1=Point Process, 2=Areal Average Process
5.0000 5.0000 X and Y Dimensions of Averaging Area ←− = 0.25λ

1 1=Default TBM Parameters, 2=Enter Manually
EXPO2.DAT Output Data Filename

1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

57756341 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Maximum Frequency for the Spectrum = 125.6637
! Number of Harmonics for the Spectrum = 4096
! Frequency Spacing in Spectral Domain = .0307
! Spatial Discretizations, DELX & DELY = 1.0 1.0
! No Pnts/correlation Length in X,Y Dir = 20.0 20.0
! Approx Number of Independent Samples = 6.3
! The Sample Mean = -.1276
! Sample Variance = .6692

Figure 18. Areal averaged exponential random field with averaging
window equal to 1/4th the correlation length.

58

Input Data for Areal Average Field [EXPO3.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
20.0000 20.0000 X and Y Direction Correlation Lengths

2 1=Point Process, 2=Areal Average Process
20.0000 20.0000 X and Y Dimensions of Averaging Area ←− = 1.0λ

1 1=Default TBM Parameters, 2=Enter Manually
EXPO3.DAT Output Data Filename

1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

57756341 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Maximum Frequency for the Spectrum = 125.6637
! Number of Harmonics for the Spectrum = 4096
! Frequency Spacing in Spectral Domain = .0307
! Spatial Discretizations, DELX & DELY = 1.0 1.0
! No Pnts/correlation Length in X,Y Dir = 20.0 20.0
! Approx Number of Independent Samples = 6.3
! The Sample Mean = -.1144
! Sample Variance = .3494

Figure 19. Areal averaged exponential random field with averaging
window equal to the correlation length.

59

Input Data for Non-overlapping Areal Average Process [EXPO4.INP]
2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
20 20 Number of Nodes-X and Nodes-Y ←−note grid size

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
20.0000 20.0000 X and Y Direction Correlation Lengths

2 1=Point Process, 2=Areal Average Process
5.0000 5.0000 X and Y Dimensions of Averaging Area

2 1=Default TBM Parameters, 2=Enter Manually ←− note
16 Number of Turning Band Lines

1.0000 TBM Line Discretization Distance ←− key
4096 Nbr of Harmonics for Discretizing Spectrum ←− key

.0000 .0000 Field Origin Relative to TBM Origin
141.4214 Maximum Turning Band Line Length

EXPO4.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

57756341 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Maximum Frequency for the Spectrum = 125.6637
! Number of Harmonics for the Spectrum = 4096
! Frequency Spacing in Spectral Domain = .0307
! Spatial Discretizations, DELX & DELY = 5.0 5.0
! No Pnts/correlation Length in X,Y Dir = 4.0 4.0
! Approx Number of Independent Samples = 6.3
! The Sample Mean = -.1222
! Sample Variance = .6772

Figure 20. Areal averaged exponential random field with non-overlapping averaging win-
dows equal to 1

4
th the correlation length. Compare this result with Figure 18.

60

§§ 4.2.5 Generating at Arbitrary Locations in Space

In this example, we generate a random field on a small (11 x 9) point centered finite

difference grid and on a finite element grid composed of quadralateral elements whose

nodes are coincident with some of the nodes of the finite difference grid (see Figure 21).

In order to obtain identical field values between the nodes of the finite difference and

finite element grids, the distance from the Turning Bands origin to the most remote

point in the output field, TBMX, must be the same for both cases. This is because the

internal parameter TBMX determines how many discrete values of the line process will be

generated along each Turning Band line; since calls to the random number generator are

made for each line process, the output fields will be different unless TBMX is the same for

both cases.† This condition is established by asking TUBA to generate at an extra point

which is not part of the finite element grid; that point is the upper right hand corner

node (the most remote node) of the finite difference grid. Shown below is the input for

generating the field values at the nodes of the finite difference grid, and the contents of

FE-GRID.XYC, the input file containing the nodal coordinates of the finite element grid.

Input data for small finite difference grid [FD-GRID.INP] FD-GRID.XYC

2 1=(x,y) Locations, 2=Gridded output
1 1=Point Centered, 2=Block Centered

10.0000 8.0000 Maximum X and Y Field Dimensions
11 9 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
4 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
5.0000 5.0000 X and Y Direction Correlation Lengths

1 1=Default TBM Parameters, 2=Enter Manually
FD-GRID.DAT Output Data Filename

2 1=Unformatted, 2=Formatted Output
(11F8.3) Output Format for Writing Data to Disk

2 1=Single Write Statement, 2=Line at a Time
2 1=First Row to Last, 2=Last Row to First ←− note
2 1=Marsaglia URNG, 2=Machine Indep URNG

52379164 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 12.8062
! Turning Band Line Discretization Lgth = .3125
! Discretization Dstnce for MA Process = .2500
! Number of Output Pnts Along the Line = 41
! Spatial Discretizations, DELX & DELY = 1.0 1.0
! No Pnts/correlation Length in X,Y Dir = 5.0 5.0
! Approx Number of Independent Samples = .8
! The Sample Mean = 1.4008
! Sample Variance = .9697

6,8
8,7
9,6

10,4
9,2
5,8
6,7
7,6
7,4
7,1
4,8
5,7
4,6
4,5
5,5
5,3
4,0
2,8
3,7
3,6
3,5
3,3
1,1
1,7
1,5
1,4
0,3
0,5

10,8

† Be careful – this works for this case where the field is generated via a moving average process (i.e.,
the Telis model). More is involved when a spectral method is used for generation of the line processes
(see footnote below the EXPO4.INP list file, section 4.2.4)

61

Listed below is the output data file for the finite difference grid. These gridded

values are shown again in Figure 21 for clarity of presentation; the boxed nodal values

correspond to the nodes of the finite element grid. The input parameters and output file

for the finite element grid are also listed below. These results show that the simulations

yield consistent output values when the fields are generated at identical points in space.

This method of generating field values at specified locations could be used to obtain

values between the node points if one is careful about how the simulation parameters

are specified (see section 4.2.6).

Output Data For The Finite Difference Grid [FD-GRID.DAT]

3.303 2.966 1.772 2.508 2.091 2.435 1.556 .760 .127 .535 .130
3.046 3.132 1.807 2.838 2.046 2.811 2.623 1.471 .861 -.162 .423
2.239 2.201 3.421 2.967 2.597 3.109 2.693 1.527 .604 .888 .647
2.110 2.536 3.032 3.369 3.055 2.694 1.622 1.713 .820 1.612 1.356
.786 1.559 2.392 2.241 1.848 2.400 1.443 .867 .880 1.725 1.554
.198 .829 2.056 1.271 2.207 1.193 1.656 .166 .595 1.597 1.799
-.602 .198 .853 -.150 .329 1.513 1.259 .193 1.143 1.065 .738
.619 -.496 .265 .846 .431 1.167 .961 .999 1.206 .802 -.232
.555 .606 .358 .516 .450 1.418 1.417 1.361 1.066 .346 .328

Input Data For Finite Element Grid [FE-GRID.INP]

1 1=(x,y) Locations, 2=Gridded output
FE-GRID.XYC Input Filename for (x,y) Locations

1 1=Normal, 2=exp(X), 3=10**(X)
4 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
5.0000 5.0000 X and Y Direction Correlation Lengths

1 1=Default TBM Parameters, 2=Enter Manually
FE-GRID.XYZ Output Data Filename

2 1=Output Only Z, 2=Output X,Y, and Z
2 1=Unformatted, 2=Formatted Output

(3(6X,2F6.1,F8.3)) Output Format for Writing Data to Disk ←− note format
2 1=Marsaglia URNG, 2=Machine Indep URNG

52379164 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 12.8062
! Turning Band Line Discretization Lgth = .3125
! Discretization Dstnce for MA Process = .2500
! Number of Output Pnts Along the Line = 41
! The Sample Mean = 1.7467
! Sample Variance = 1.0551

Output Data For Finite Element Grid [FE-GRID.XYZ]

6.0 8.0 1.556 8.0 7.0 .861 9.0 6.0 .888
10.0 4.0 1.554 9.0 2.0 1.065 5.0 8.0 2.435
6.0 7.0 2.623 7.0 6.0 1.527 7.0 4.0 .867
7.0 1.0 .999 4.0 8.0 2.091 5.0 7.0 2.811
4.0 6.0 2.597 4.0 5.0 3.055 5.0 5.0 2.694
5.0 3.0 1.193 4.0 .0 .450 2.0 8.0 1.772
3.0 7.0 2.838 3.0 6.0 2.967 3.0 5.0 3.369
3.0 3.0 1.271 1.0 1.0 -.496 1.0 7.0 3.132
1.0 5.0 2.536 1.0 4.0 1.559 .0 3.0 .198
.0 5.0 2.110 10.0 8.0 .130

Compare these numbers to the boxed values in Figure 21.

62

63

§§ 4.2.6 Generating Subregions at Higher Resolution

Sometimes it is desirable to have a portion of a previously generated random field rep-

resented at an increased level of detail. In many instances, this can be accomplished

simply by specifying the coordinate positions of the extra points as in section 4.2.5.

However, there are limits to the degree of increased resolution obtainable. If it is known

in advance that areas of higher resolution will be needed, then the simulations can be

designed to allow for that option later on.

To understand how to properly generate a higher resolution subregion, one should

be thoroughly familiar with the details of the Turning Bands method, and in particu-

lar, the way it is implemented in this code. The line processes must be generated in

exactly the same way as they were when the original field was created. Several different

parameters control the generation of the line processes, the most obvious one being the

number of Turning Band lines. When the default Turning Band parameters are used,

this number is always set to 16. The other line process control parameters are calculated

internally and must satisfy constraints arising from the geometry of the problem, the

choice of covariance function, and other input specifications. The values of these inter-

nal parameters are listed at the end of the <NAME>.INP file which is created everytime

TUBA is run. It is advisable to study subroutines DEFPAR and INTPAR to understand

how these parameters are calculated. A constraint on the degree of resolution obtain-

able is imposed by the parameter UN which equals the discretization distance along the

Turning Band lines. Points in the two-dimensional field must not be spaced closer than

UN units apart, otherwise adjacent points in the two-dimensional field will receive the

same projections from the lines and will therefore be indistinguishable.

Previous Examples

In section 4.2.5, we needed to insure that the internal parameter TBMX was the same in

both of those runs in order to obtain identical values at the nodes of the finite element

and finite difference grids. In section 4.2.4, our objective was to compare the areal

average process on the 100 x 100 grid with the non-overlapping areal average process

on the 20 x 20 grid. The FFT spectral method was used to generate the line processes

and the number of harmonics (which equals the number of discrete points along each

Turning Band line) required was 4096 for the 100 x 100 grid. If we would have accepted

the default Turning Band parameters for the 20 x 20 grid case, the number of harmonics

would only have been equal to 2048 (therefore the fields would not correspond). This

is because of a constraint that prohibits† the line discretization distance, ∆ζ, (chosen

initially to equal 0.06λ) from exceeding the grid spacing, ∆x, which equals 0.05λ in

† Only when the default Turning Band parameters are chosen.

64

the 100 x 100 case. When ∆ζ is decreased, the number of harmonics may have to be

increased in order to satisfy a constraint on the maximum allowable frequency spacing.

So, in in order to set the number of harmonics at 4096 for the 20 x 20 case, we had

to enter the Turning Band parameters manually. We also had to be careful to set the

line process discretization distance, ∆ζ, equal to 0.05λ in the 20 x 20 case. The proper

Turning Band parameter values can be determined by examining the <NAME>.INP file

for the 100 x 100 case. Note that the parameter values (e.g., number of Turning Band

lines, number of harmonics, etc.) listed at the bottom of this file are the same for both

the 100 x 100 and 20 x 20 cases.

Subregion Generation Procedure

The easiest way to obtain the required Turning Band parameter values for subregion

generation is to run TUBA as if the entire field were being generated on a high resolu-

tion grid; as soon as TUBA begins reporting its progress on calculating the projections,

abort the program. Then print the <NAME>.INP file to get a listing of the parameter

specifications that will be necessary for generating the high-resolution subregion. This

is a handy ‘trick’ if it is known a priori that a high-resolution subregion will be needed.

Even when this is not the case, it may still be possible to obtain the desired resolution;

how much extra resolution is possible depends on how the original field was generated.

The Turning Band line discretization distance, UN, is one of the primary parameters

controlling the amount of increased resolution one can obtain. When the default Turning

Band parameters are chosen, TUBA calculates UN to be equal to 1
16th the shortest cor-

relation length, or, equal to the smallest spatial discretization, ∆x or ∆y. To determine

the maximum amount of increased resolution possible for your case, divide the smallest

spatial discretization distance listed at the bottom of the <NAME>.INP file by the Turn-

ing Band line discretization distance, also listed at the bottom of the <NAME>.INP file.

The procedure is demonstrated in the following example.

Suppose a field with (x, y) dimensions equal to 128 by 64 length units was generated

onto a 32 x 16 mesh. The <NAME>.INP listing file for such a field is shown below. Note

that the Turning Band line discretization distance is 1
16th the correlation length and that

the maximum resolution possible equals ∆X/UN = 4
0.625 = 6.4. We choose to generate a

subregion of this field at six times the resolution. The subregion geometry specifications

are shown in the GSUB.INP listing file; note that a point-centered grid is specified for

the subregion in order that grid points of the coarse mesh coincide with those of the

fine mesh(see Figure 22). The Turning Band parameters are entered manually for the

subregion data, the values taken from the GBAC.INP listing file. The resulting fields are

plotted in Figure 23.

65

Input Data for Coarse Grid Data [GBAC.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

128.0000 64.0000 Maximum X and Y Field Dimensions
32 16 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
2 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
10.0000 10.0000 X and Y Direction Correlation Lengths

1 1=Default TBM Parameters, 2=Enter Manually
GBAC.DAT Output Data Filename

1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

73333330 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 143.1084
! Turning Band Line Discretization Lgth = .6250 ←− note value
! Maximum Frequency for the Spectrum = 100.5310
! Number of Harmonics for the Spectrum = 1024
! Frequency Spacing in Spectral Domain = .0982
! Spatial Discretizations, DELX & DELY = 4.0000 4.0000 ←− note value
! No Pnts/correlation Length in X,Y Dir = 2.5 2.5
! Approx Number of Independent Samples = 20.5
! The Sample Mean = -.2643
! Sample Variance = .9897

Input Data for Fine Grid Data [GSUB.INP]

2 1=(x,y) Locations, 2=Gridded output
1 1=Point Centered, 2=Block Centered ←− point centered

88.0000 40.0000 Maximum X and Y Field Dimensions
133 61 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
2 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
10.0000 10.0000 X and Y Direction Correlation Lengths

2 1=Default TBM Parameters, 2=Enter Manually ←− manual entry
16 Number of Turning Band Lines

.6250 TBM Line Discretization Distance
1024 Nbr of Harmonics for Discretizing Spectrum

20.0000 12.0000 Field Origin Relative to TBM Origin
143.1084 Maximum Turning Band Line Length

GSUB.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

73333330 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = 20.0000 12.0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 143.1084
! Turning Band Line Discretization Lgth = .6250
! Maximum Frequency for the Spectrum = 100.5310
! Number of Harmonics for the Spectrum = 1024
! Frequency Spacing in Spectral Domain = .0982
! Spatial Discretizations, DELX & DELY = .6667 .6667
! No Pnts/correlation Length in X,Y Dir = 15.0 15.0
! Approx Number of Independent Samples = 8.8
! The Sample Mean = .0166
! Sample Variance = 1.1305

66

Figure 22. Schematic showing that, to achieve alignment between two different meshes
where the coarse mesh is block centered, a point-centered grid is needed for
even increases in resolution while a block-centered grid is needed for odd
increases in resolution. The origin of both grids is assumed to coincide.

67

Figure 23a. A Gaussian field generated onto a 32 × 16 mesh.

Figure 23b. The same Gaussian field shown in Figure 23a with a subregion
(white inset) generated at six times the original resolution. The
coarse 32 × 16 field was expanded six fold and the subregion data
was merged into it to illustrate the result more clearly.

68

§§ 4.3 Some Practical Aspects Illustrated

In this section we present some examples that illustrate some of the ideas discussed in

sections 2.1, 2.3 and 3.2, and provide examples that demonstrate the versatility of the

code. The manner in which one chooses to display the generated fields is discussed and

alternatives are presented. Finally, some important remarks concerning the generation

of very large fields is noted.

§§ 4.3.1 Sample Statistics Versus Target Statistics

Note that the target mean and variance (zero and one respectively) of the fields generated

in section 4.2.1 is not attained with great accuracy in any one of these examples. This

is because these synthetic fields represent only a small portion of the “true” underlying

random field; for example, the exponential and Gaussian fields span only 5 correlation

lengths (field width=100, λ = 20). True independence between field values occurs only

at separation distances of say, 2 or 3 correlation lengths, therefore, there were only a

small number of independent samples (≈ 5 or 6) upon which to calculate the mean and

variance statistics. Averaging these statistics over an ensemble of simulations would

show convergence toward the theoretical statistics (Mantoglou and Wilson [1982]). On

the other hand, since the generation method is ergodic, statistics based on a single large

realization should show improved accuracy. To verify this, we regenerated the Telis field

shown in Figure 11, but specified the correlation lengths equal to 2.0 instead of 27.0.

This has the effect of increasing the size of the realization so that now it contains more

than 100 times as many independent samples as the original Telis field. The sample

statistics listed at the bottom of the TELIS-BIG.INP file shown below, now correspond

very well with the target or theoretical statistics.

Input file for “large” Telis field [TELIS-BIG.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
4 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
2.0000 2.0000 X and Y Direction Correlation Lengths

1 1=Default TBM Parameters, 2=Enter Manually
TELIS-BIG.DAT Output Data Filename

1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

76548921 Seed for Random Number Generator
1 Number of Realizations to be Simulated

69

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = .1250
! Discretization Dstnce for MA Process = .1000
! Number of Output Pnts Along the Line = 1132
! Spatial Discretizations, DELX & DELY = 1.0000 1.0000
! No Pnts/correlation Length in X,Y Dir = 2.0 2.0
! Approx Number of Independent Samples = 625.0

! The Sample Mean = .05722
! Sample Variance = 1.01328 ←− Note improved

sample statistics

§§ 4.3.2 Representing Spatial Variablity Patterns

The manner in which data are represented plays an important role in determining how

the data will be interpreted. In this section, we present alternate ways of display-

ing the data to point out some subtle but important aspects of data representation

and interpretation. We also provide an example that demonstates the utility of the

“mask file” option.

Grid Resolution

In the first example, a random field is generated at three different levels of resolution:

five, ten, and 20 points per correlation length. The fields were generated using the Bessel

covariance function and are plotted in Figure 24. The high resolution field was generated

onto a 100 × 100 mesh while the low and medium resolution fields were genereated onto

grids of size 25 × 25 and 50 × 50 respectively. The grids for these latter two fields

were expanded to 100 × 100 (for plotting purposes) by duplicating mesh points. All

three fields represent the same physical dimensions, but there is a marked difference in

the clarity with which they reflect the behavior of the “true” underlying random field.

A numerical modeler may tend to view the model input data as being representative

of the actual field, and thus conceptualize the variability in the data as that shown in

the high-resolution field on the right in Figure 24. What the computer model typically

“actually sees,” however, is data that is more accurately represented by the plot on the

left in Figure 24.

Alternate Displays

The second example illustrates some alternative ways of plotting the synthetic fields.

Figure 25 shows a Gaussian field plotted using regular contour lines (top) and shaded

“terraces” (bottom). The spatial variability patterns of this smooth Gaussian field ex-

hibit similar behavior regardless of the algorithm used to plot the data. A “noiser”

exponential field is shown in Figure 26. Here, the contour line approach presents little

70

71

Figure 25. A Gaussian field plotted using contours and shaded terraces.

72

Figure 26. An exponential field plotted using contours and shaded
terraces; the topography is eaier to interpret from the
shaded representation.

73

information, while the shaded plot displays information concerning the highs and lows in

a manner that is readily comprehensible. Both the smooth Gaussian field and the noisy

exponential field are displayed as surfaces in three-dimensions in Figure 27. Both are

scaled identically. The exponential field is plotted using profiles while the Gaussian field

is plotted using terraced contours. The exponential field exhibits short-range fluctuations

relative to the Gaussian field as one would expect from the spectral distribution function

curves (Figure 4).

Log-normal Fields

In all of the examples discussed so far, we have examined the spatial variablity patterns of

normally distributed processes. In many applications we are interested in a process which

is log-normally distributed; for example, in hydrology an aquifer’s hydraulic conductivity

field is assumed to be a log-normally distributed process. In that case, we generate the

logarithm of hydraulic conductivity and then exponentiate the field to obtain the actual

hydraulic conductivity values. The shaded plots shown in this manual were generated

by dividing the range of (normally distributed) values into 8 equally-spaced intervals

and assigning a shade pattern to each interval. When the field is exponentiated, the

distribution becomes skewed rather than normal, with the predominance of values at

the low end of the range. When this log-normal field is plotted in the same manner,

i.e., by dividing the skewed distribution into an histogram of eight equal increments

and assigning a shade pattern to each, the predominance of low values becomes readily

evident. This is illustrated in Figure 28 where the same Gaussian field is plotted, except

that the data were exponentiated in the final step of field generation. The lower plot

shows profiles of the lognormal field in three-dimensions; the vertical scale on the left

of that plot shows the eight data intervals that were used to create the plot shown at

the top of Figure 28. The shaded plot might lead one to erroneously conclude that the

data are more homogeneous than it actually is. The figure illustrates the importance of

understanding what the data represent (e.g., normal/lognormal) and what the plotting

algorithm is doing.

The Mask File Option

The last example is included to illustrate the use of the mask file option. This option

allows the user to input a matrix that controls which grid points the field values will

be generated on; the mask file must have the same grid dimensions as the output field.

Random field calculations will not be performed for any grid point at which the mask

file contains an exact zero, instead, the output value will be an exact zero. A mask file

might typically contain only 1’s and 0’s (1=yes, do generate a value for the random field

74

Figure 27. An exponential field (top) plotted using profiles and a
Gaussian field (bottom) plotted using terraced contours.

75

Figure 28. The exponentiated version of the Gaussian field shown
in Figures 25 and 27 plotted in two different ways.

76

at this location, 0=no, do not generate a value here), although a matrix that contains

exact zeros and any non-zero values will work. The mask file must be a formatted ASCII

file, for example, a file containing 1’s and 0’s will work fine; the mask file data are read

using a free-format read statement (READ(LU,*)).

The mask file option may be useful for modelers who are simulating some process

in a domain that is bounded by an irregular geometry. In this example, a Gaussian

field was generated onto a rectangular mesh using a mask file to control the locations at

which the field values were output. The mask file defines the shape of the areal extent

of an aquifer in the Avra Valley, Arizona. The resulting field is plotted in Figure 29;

the gray shaded area, between the plot border and the interior heterogeneous region,

represents the areas where exact zeros where output.

§§ 4.3.3 Using the Spectral Method of Shinozuka and Jan

The “smoothness” of the Gaussian field compared to the exponential field (see Figures 8

and 10) was explained in section 4.2.1 in terms of the spectra of these covariance models,

i.e., the Gaussian spectrum lacks high frequency content. In this example, we generate

an exponential field but “chop off” the high frequencies to illustrate the role those fre-

quencies play in affecting the spatial character of the field, and to provide an example

where the line processes are generated via the method of Shinozuka and Jan [1972].

We wish to compare this result with the exponential field generated in section 4.2.1

(Figure 10), therefore the field dimensions, the number of nodes, and the correlation

length parameters are all set the same as in that example. However, instead of gener-

ating the one-dimensional line processes using frequencies as high as 100 cycles/length

(cpl), as is recommended in Table 3, we truncate the spectrum at a maximum fre-

quency of FMAX = 10 cpl. Figure 4 shows that 90% of the variance is contained at

frequencies less than or equal to 10 cpl for the exponential model; the remaining 10%

corresponds to the high frequency content which produces the “business” in the field

shown in Figure 10. Table 3 shows that a frequency spacing of ∆k ≤ 0.05 is rec-

ommended for accurately representing the spectrum of the exponential model. Thus,

choosing the number of harmonics, M = 200, would be recommended for this case in

order that ∆k = FMAX
M = 0.05. However, the exponential field shown in Figure 10 was

generated with ∆k = 0.03068 (see the EXPO1.INP file, section 4.2.1), therefore, we chose

M = 326 such that ∆k = FMAX
M = 0.03067 in order to match the frequency spacing in

that example. The input file is shown above the plotted result (Figure 30); note that

without the high frequencies represented, the spectral character of the generated field

more closely resembles the Bessel field shown in Figure 9 which has 99% of its spectrum

contained at frequencies less than 10 cpl.

77

Figure 29. A Gaussian field generated onto a domain bounded by an
irregular geometry. TUBA’s “mask file” option was used to
inhibit field generation outside the heterogeneous region.

78

Input file for Shinozuka and Jan exponential field [EXPO-SAJ.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC
1 1=Point Process, 2=Areal Average Process

.0000 1.0000 Desired Mean and Variance
20.0000 20.0000 X and Y Direction Correlation Lengths

2 1=Default TBM Parameters, 2=Enter Manually ←− manual entry
16 Number of Turning Band Lines

1.0000 TBM Line Discretization Distance
326 Nbr of Harmonics for Discretizing Spectrum

10.0000 Max Frequency for Truncation of Spectrum
←− 6= 2

n
, therefore, method of

Shinozuka and Jan is used
.0000 .0000 Field Origin Relative to TBM Origin

141.4214 Maximum Turning Band Line Length
EXPO-SAJ.DAT Output Data Filename

1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

57756341 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = .0000 .0000
! Number of Turning Band Lines Equals = 16
! The Maximum Turning Band Line Length = 141.4214
! Turning Band Line Discretization Lgth = 1.0000
! Maximum Frequency for the Spectrum = 10.0000
! Number of Harmonics for the Spectrum = 326
! Frequency Spacing in Spectral Domain = .0307

Figure 30. An exponential random field generated using the
method of Shinozuka and Jan.

79

§§ 4.3.4 Hydrology Application – A Layered System

Most of the random fields presented thus far might be used to represent the spatial

distribution of certain properties of earth materials such as ore grade or permeability.

In hydrology, the properties of interest may take on a distinctly different character in

the vertical direction compared to the horizontal plane due to the manner in which the

sediments were deposited. For example, Peterson and Wilson [1988] discusses the ver-

tical variation in the hydraulic properties of alluvial aquifers associated with underfit

streams (streams that appear too small for the valley in which they flow). Such streams

arise from changes in climatic conditions over geologic time where past discharges were

much higher than is observed today.

During the earlier wet periods (e.g., the last glaciation), the high flows in streams

and rivers were capable of transporting and depositing large coarse-grained materials;

in recent times with milder climatic conditions, stream flows have decreased and the

suspended and bed loads have become more fine grained. As a result of this depositional

history, the shallow sediments tend to be highly stratified materials composed of fine-

grained sands interbedded with silty and clayey flood plain deposits, while the deeper

sediments are made up of coarse well-sorted materials. The aquifer’s hydraulic properties

are therefore likely to be more homogeneous, isotropic and transmissive at depth than

near the surface where the finer grained materials are less permeable, the stratification

induces anisotropy, and the system is in general, more heterogeneous.

In this example, we attempt to simulate the material property variations of such

a system by generating a synthetic two-dimensional vertical cross-section random field

possessing the hydraulic characteristics described above. The vertical profile consists

of three layers, hence three different random fields were generated and “stacked” on

top of each other.

The increase in homogeniety with depth was represented by generating the fields

with different covariance functions – the Telis, the Bessel, and the Gaussian covariance

models respectively, from top to bottom. Very large fields were generated for each of

these covariance models and subregions were extracted from each such that the spatial

variability patterns matched fairly well along the interface between layers. A moving-

average box filter was passed along the interface to provide a smooth transition of the

data values from one layer to the next. The Telis field was generated with an x:y = 10:1

anisotropic correlation structure while the Bessel and Gaussian fields were generated

using ratios of 4:1 and 1:1 respectively.

80

The increase in transmissivity with depth was accomplished by generating the fields

with a linear trend in their means; the dark shades near the top represent low trans-

missivity values while the lighter shades near the bottom indicate higher transmissivity

values. The resulting field, illustrated in Figure 31 below and on the cover of this

document, appears to exhibit the types of features we were trying to represent.

Figure 31. A random field represeting variations in the hydrologic
properties of a layered subsurface environment.

81

§§ 4.3.5 Designing Christmas Cards with TUBA

A common and legitimate concern of persons reviewing the results of a computer model-

ing study is whether the computer code was properly applied. Misapplication of the code

produces inaccurate or incorrect results which leads to misinterpretations and erroneous

conclusions. This is especially unfortunate when the data or procedural errors are subtle

enough to go unoticed and the ensuing (defective) analysis is used for decision making.

In this section, we demonstrate, in a not so subtle way, what can happen when TUBA

is not applied properly; this is an excellent example of the garbage in → garbage out

principle. The example also serves to illustrate which areas of the two-dimensional plane

not to position the Turning Bands origin.

Suppose, for the sake of a story, a Telis field had been generated onto a point-

centered grid, 100 cells on a side; the spatial variablity patterns of such a field is shown

in Figure 11. Don Dweeb, the computer programmer, was instructed to generate the field

values in the center of the grid cells (i.e., a block-centered grid) and to use 18 Turning

Band lines instead of 16. The Turning Band parameters must be entered manually in

order to use anything other than 16 lines. Don had a copy of the <NAME>.INP file that

was used to generate the original field in front of him so he could see what other Turning

Band parameter values to enter; that’s when his troubles began ...

Don Dweeb was a bit of a slob; his shirt tail would always be hanging out, he

was unkempt and had fast-food packaging strewn all about his desk. Because Don was

mostly nocturnal, he had trouble reading the <NAME>.INP file (mostly because he was

too lazy to turn on all the lights). Furthermore, he had just finished eating a candy

bar, and his blood sugar was “up and running,” causing him to be somewhat spastic,

whereupon he accidentally entered 8 instead of 18 for the number of Turning Band lines.

Don was confused about the difference between point and block-centered grids and must

have been thinking about “block-centered grids” with the “node in the center” when he

specified the Turning Bands origin to be at the center of the grid (output field). And

probably as a result of his fingers and the keyboard being sticky from melted choclate,

he accidentally hit the wrong keys and entered 18 for the moving-average process line

discretization length; a correct value for this parameter would have been 1.0. The result

of Don’s maddness is illustrated in Figure 33; it demonstrates clearly the importance

of understanding how to properly apply the code. As it turned out, all was not lost,

for when Don’s mentor returned and saw the result, she rejoiced at Don’s “genius” for

giving her the idea to use fractal analysis in her work.

The symmetry in the patterns in this figure arises from the fact that the line processes

are generated in one direction only, that is, outward from the origin in, say, the φ

82

direction. The exact same line process will be found in the φ + 180 degrees direction.

When entering the Turning Band parameters manually, TUBA asks for the location of

the output field origin relative to the Turning Bands origin; be careful not to position

the field such that the Turning Bands origin is anywhere inside the output field domain.

Figure 32 shows those areas in the two-dimensional plane where it is okay to position

the Turning Bands origin. Note that the Turning Bands origin may be placed on the

boundary of a grid at only four points (the corners of the grid).

Figure 32. Cross-hatched areas are zones in the two-dimensional plane where the
Turning Bands origin should not be placed.

83

Input file for Don Dweeb’s Experiment [DON.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

100.0000 100.0000 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
4 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

.0000 1.0000 Desired Mean and Variance
50.0000 50.0000 X and Y Direction Correlation Lengths

2 1=Default TBM Parameters, 2=Enter Manually
8 Number of Turning Band Lines

1.0000 TBM Line Discretization Distance
18.0000 Discretization Distance for MA Process ←− blunder

-50.0000 -50.0000 Field Origin Relative to TBM Origin ←− blunder
142.0000 Maximum Turning Band Line Length

DON.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

68416790 Seed for Random Number Generator
1 Number of Realizations to be Simulated

! Field origin relative to TBM origin = -50.0000 -50.0000
! Number of Turning Band Lines Equals = 8
! The Maximum Turning Band Line Length = 142.0000
! Turning Band Line Discretization Lgth = 1.0000
! Discretization Dstnce for MA Process = 18.0000
! Number of Output Pnts Along the Line = 142
! Spatial Discretizations, DELX & DELY = 1.0000 1.0000

Figure 33. A random field generated by a mad scientist.

84

§§ 4.3.6 An Important Note About Generating Large Fields

During the period when this documentation was being compiled and modifications to

the code were being made, we conducted numerous experiments to test the new version

of the code. Most of the synthetic fields we generated were small, spanning only 5 or

10 correlations lengths. However, we also generated fields spanning many correlation

lengths and found some peculiar results. These large fields exhibited linear features

oriented at different angles, crossing over each other throughout the field. An example

is shown in Figure 34 in which an exponential field, 200 correlation lengths on a side, is

plotted. The “lineaments” can be observed best by examining the plot from a view angle

approximately 20 degrees above the plane of the plot and rotating it around. Initially,

we thought there was an error in the coding, or a problem with the input specifications

given when running the code. However, we could not find any coding errors and the input

specifications, although not unique, appeared to be correct. Through experimentation we

noticed that the “lineament effect” was attenuated as the number of lines was increased.

Conversely, this effect is accentuated when the number of lines is reduced. Figure 35

shows an exponential field of the same size, generated using only 4 Turning Band lines;

the lineaments in this figure are much more noticable.

These lineaments are caused by a truncation error of the Turning Bands method due

to an insufficient number of lines. Mantoglou and Wilson [1982] investigated the errors

and found that, for the methods used in TUBA (evenly spaced lines on the unit circle),

the covariance error, Ec, is given by

Ec = β
πσ2Kbr

6L2
where

{

β = +1 along the lines
β = −1

2 between the lines,

b is the correlation length parameter, r is the lag or separation, L is the number of

Turning Band lines and K is a constant that depends on the covariance model. The error

asymtotically decreases with the square of the number of lines, and increases linearly

with the distance between the lines. As the size of the field increases, the spacing between

lines increases, especially in areas farthest from the Turning Bands origin. Mantoglou

and Wilson [1982] failed to realize the implications of this for large fields covering many

correlation lengths. Gutjahr [1989] has shown that the errors have a periodic behavior.

Because of the orientation of the errors observed by Mantoglou and Wilson [1982], along

rays originating at the Turning Bands origin, the resulting field is in fact anisotropic

for a finite number of lines. Spacing the lines non-uniformly on the unit circle does not

eliminate the problem (Mantoglou and Wilson [1982], Tompson et. al , [1989]). With a

conventional Turning Bands approach, the only solution appears to be increasing the

number of Turning Band lines.

85

Figure 34. An exponential random field spanning 200 correlation lengths in each
direction. Lineaments can be observed best by viewing the plot from
several feet away and at an angle of approximately 20 degrees above the
plane of the plot.

86

Figure 35. An exponential random field spanning 200 correlation lengths but
genereated using only 4 Turning Bands lines; the lineaments in this
figure are much more noticeable.

87

88

http://www.setainc.com
27 Ponderosa Drive, Suite 100

Cedar Crest, New Mexico 87008-9713

geohydrology – risk assessment – litigation support – computer modeling phone: (505) 228-9273

TUBA version 2.10

More “bells and whistles,” added conveniences, enhancements

With this new version of TUBA, there have been two major conveniences added and several

enhancements to the code. The new capabilities included with this version are:

1. The ability to generate onto an irregularly-spaced finite difference grid
(without specifying the coordinates of each nodal point)

2. The ability to reproduce the “ith” field from a multiple-simulation run
without having to rerun all “n” fields (the random number generator
seed is printed for each field).

In addition, several improvements in the coding and the I/O have been made and a bug!

has been discovered and recitfied. All of these changes to the code are described on the

following pages along with some additional clarification of existing options in the code.

Regards,

D. A. (Tony) Zimmerman

89

Code Modifications

In addition to writing new code to implement new options, the existing code was changed

in several places to correct a bug, to make the code “smarter,” to improve I/O, and to

eliminate some compiler-dependent problems.

The “Bug” and its Fix

In version 2.0, a “floating divide by zero” will occur in the specific instance when one is

attempting to generate an Intrinsic Random field (i.e., using the Generalized Covariance

model) at arbitrary points in space with the default Turning Band parameters. Under

these conditions, the variable TBMX (in subroutine DEFPAR) is used before it is set result-

ing in another variable, UN, being set to zero; UN is later used as a divisor in a quotient.

This resulted from having the code choose a default value for UN (the Turning Band line

discretization length) for this specific case. Normally, the guidance is to set UN to some-

thing smaller than the smallest grid spacing. However, there is no way to tell (without

excessive computation) what the smallest spacing is between any two points when all

the generation points are specified at arbitrary locations. The problem was corrected by

changing the way the default value for UN is chosen. In version 2.10, an assumption is

made concerning the geometry of the arbitrarily placed points; the assumption is that

the points are uniformly distributed in space (as would be the case for an evenly-spaced

grid). The fictitious grid spacing that results from this assumption is used to calculate

a default value (0.2 times the grid spacing) for variable UN and eliminates the “divide

by zero” problem.

This problem was discovered when TUBA was being used to generate unconditional

realizations of the log-transmissivity field for the Culebra formation at the WIPP site

in southeastern New Mexico. The user was attempting to generate random fields of

log-transmissivity at the nodes of an irregularly-spaced finite difference grid consisting

of over 5400 grid blocks. Obviously, to calculate distances between each node with every

other node in order to find the minimum distance between any two generation points

would require a significant computational effort (on the order of 60 million computations)

for this large number of nodes.

The Turning Bands Origin

The application described above also prompted an improvement in the manner of choos-

ing the default Turning Bands origin for the case of generating at arbitrary locations in

space. The computations will be minimized if the the Turning Bands origin is placed at

the grid origin when generating onto a grid. In version 2.0, the default Turning Bands

origin is always set to (0,0) with the assumption that this is also the coordinate origin.

For generation at arbitrary points in space, however, this may not be the case. In the

90

WIPP site application described above, the generation points were described in state

plane coordinates (whose origin is somewhere in the center of the state). Consequently,

the lengths of the Turning Band lines were extraordinarily long, so long in fact, that the

I*4 variable holding the number of generation points along the line overflowed, causing

the code to bomb. The temporary fix for this problem was to scale the coordinate values

down (in effect bringing the coordinate origin closer to the field being generated). How-

ever, in version 2.10, this is no longer necessary. TUBA now places the default Turning

Bands origin at the minimum-X and minimum-Y coordinate location.

Avoiding Compiler Dependencies

Several code changes were made to make the code more resistant to compiler depen-

dencies. For example, in subroutine FILPAR, the manner of calculating an internal

parameter, IOF, was changed. In TUBA, there is an implicit assumption that unini-

talized variables are set to zero; this will not always be the case, depending on the

compiler being used. It appears that, with the exception of this case for variable IOF,

this assumption is inconsequential, as all variables are set prior to being used. Another

implicit assumption in the coding is that values of all local variables are saved after leav-

ing a subroutine (there are no SAVE statements in the code). This does not appear to

cause any problems even for compilers which require explicit SAVE statements, probably

because all variables are either in COMMON or are passed as subroutine arguments.

One problem which occurs when compiling TUBA on certain compilers, is the com-

piler’s treatment of incompatible type declarations between the calling program and the

subroutine as an error rather than a warning. TUBA uses memory very efficiently and

does so by storing all array data in a single vector of type REAL. In subroutine SPCTRL,

TUBA version 2.0 passes an address (position within the array) of the real array to

subroutine FFTGEN whereupon the array is declared to be of type COMPLEX; this causes

some compilers to treat this condition as an error. This will not cause any errors (in

output) provided the memory management within the code is done correctly (which it

is). The compiler problem was solved by making the single array used for array storage

both real and complex via an equivalence statement in the main program module.

Improvements in I/O

The only significant changes that were made in I/O were made in subroutine RDINTG

where F formats were changed to G formats and the length of filenames were increased to

35 characters. The G format will represent very large or very small numbers in scientific

notation (E format) when necessary, whereas the F format will not. In applications, the F

format represented very small numbers (e.g., Generalized Covariance model coefficients)

as zeros in the list file, thus misrepresenting the input to the code.

91

Miscellaneous Notes

Comments in the source code have been improved slightly. Don’t forget about the

ability to run TUBA ”in batch mode” via redirection symbols, it will save much typing

and time (see Section 4.2). There has been some confusion concerning the sign on the

Generalized Covariance (GC) model coefficients, A1, A3, A5. TUBA has been coded

with a GC model formulation which is consistent with that described in Delfiner , [1976].

Use the guidance the code requires which is provided during execution.

Reproducing the “ith” Simulation Using Two RNG Seeds

TUBA includes the option of generating multiple random fields for a given set of covari-

ance model and field geometry specifications. Typically, this option would be invoked

for performing Monte Carlo simulations of some process using these fields as input. On

the other hand, one may be searching for a particular type of ‘character’ in the field

which requires searching through many realizations of the field until a satisfactory one is

found. In this case, it would be convenient to be able to reproduce that one field with-

out having to generate the entire suite of fields that lie ahead of it. TUBA version 2.10

allows you to do this by specifying two random number generator seeds instead of one.

The first seed must be the same as the seed given for the multiple simulation run; the

second seed is the seed which was generated internally and printed in the list (.INP) file

just above the summary statistics for each simulation.

Shown below is the input data file for a case where five simulations of a random

field with an exponential covariance structure were generated. Following that is output

which shows summary statistics for each of the five fields. Recall that the output list

file has the same name as the output data file(s) save for the extension .INP.

Input Data for Multiple Simulation Run [MEXPO.INP]

2 1=(x,y) Locations, 2=Gridded output
2 1=Point Centered, 2=Block Centered

24.000 48.000 Maximum X and Y Field Dimensions
24 48 Number of Nodes-X and Nodes-Y

none Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC
1 1=Point Process, 2=Areal Average Process

0.00000 1.0000 Desired Mean and Variance
12.000 12.000 X and Y Direction Correlation Lengths

1 1=Default TBM Parameters, 2=Enter Manually
MEXPO.DAT Output Data Filename

2 1=Unformatted, 2=Formatted Output
(16F8.4) Output Format for Writing Data to Disk

2 1=Single Write Statement, 2=Line at a Time
1 1=First Row to Last, 2=Last Row to First
2 1=Marsaglia URNG, 2=Machine Indep URNG

12345678 Seed(s) for Random Number Generator
5 Number of Realizations to be Simulated

92

Output Data from Mulitple Simulation Run [MEXP5.INP]

Field ORIGIN relative to TBM origin = 0.000000 0.000000
Number of Turning Band Lines Equals = 16
The Maximum Turning Band Line Length = 53.6656
Turning Band Line Discretization Lgth = 0.750000
Maximum Frequency for the Spectrum = 100.531
Number of Harmonics for the Spectrum = 2048
Frequency Spacing in Spectral Domain = 0.490874E-01
Spatial Discretizations, DELX & DELY = 1.00000 1.00000
No Pnts/correlation Length in X,Y Dir = 12.0 12.0
Approx Number of Independent Samples = 2.0

Output Filename = MEXPO.1
New Random Seed = 12345678
The Sample Mean = 0.5418
Sample Variance = 1.1183

Output Filename = MEXPO.2
New Random Seed = 50882505
The Sample Mean = 0.9901
Sample Variance = 0.8302

Output Filename = MEXPO.3
New Random Seed = 25499530
The Sample Mean = 0.4384
Sample Variance = 0.5672

Output Filename = MEXPO.4
New Random Seed = 38541230
The Sample Mean = 0.1433
Sample Variance = 0.2950

Output Filename = MEXPO.5
New Random Seed = 30806103
The Sample Mean = -0.0902
Sample Variance = 0.9034

The Ensemble Mean = 0.40467
Ensemble Variance = 0.87752

Suppose we wished to reproduce the last field shown above, MEXPO.5 because its sample

statistics are close to the theoretical values. This can be accomplished by copying the

file MEXPO.INP to MEXP5.INP and making three minor changes. Adding the random seed

value shown in the output above, changing the number of simulations from 5 to 1, and

changing the name of the output file. The modified input file is shown below. A file

comparison of MEXPO.5 against MEXP5.DAT showed no differences.

Input Data for Two Random Seeds Problem [MEXP5.INP]

2 1=(x,y) Locations, 2=Even Grid, 3=Uneven
2 1=Point Centered, 2=Block Centered

24.000 48.000 Maximum X and Y Field Dimensions
24 48 Number of Nodes-X and Nodes-Y

none Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC
1 1=Point Process, 2=Areal Average Process

0.00000 1.0000 Desired Mean and Variance
12.000 12.000 X and Y Direction Correlation Lengths

1 1=Default TBM Parameters, 2=Enter Manually
MEXP5.dat Output Data Filename ←− changed

2 1=Unformatted, 2=Formatted Output
(16F8.4) Output Format for Writing Data to Disk

2 1=Single Write Statement, 2=Line at a Time
1 1=First Row to Last, 2=Last Row to First
2 1=Marsaglia URNG, 2=Machine Indep URNG

12345678 30806103 Seed(s) for Random Number Generator ←− two seeds
1 Number of Realizations to be Simulated ←− changed

93

Generating onto an Irregularly-Spaced Finite Difference Grid

In this example, we generate a random field onto a small (7 x 6) point-centered but

irregularly spaced finite difference grid. The field covariance properties are exactly the

same as the field generated in Section 4.2.5. The nodes which define the irregularly-

spaced finite difference grid (Figure 38) are coincident with the some of the nodes of

the regularly-spaced finite difference grid shown in Figure 21 (where, in an analogous

fashion, a finite element grid is superimposed). The irregularly-spaced finite difference

grid used for this example has only 42 nodes (the boxed values in Figure 38) and it would

be relatively painless to specify the coordinates of each node and generate the random

field using the procedure described in Section 4.2.5. However, for very large grids (such

as the grid used for the WIPP site application described above where there were 5400

nodes), an easier alternative is available.

With TUBA version 2.10, an abreviated description of the grid spacing is read from

a file and generation of the field at the nodes of the irregularly-spaced finite difference

grid is taken care of automatically. The example input files and output are shown below.

Input File of Grid-block Widths [IRSG.GBW]

2 1 1 1 2 3
3 2 1 1 1

Input Data for Irregularly-Spaced Grid [IRSG.INP]

3 1=(x,y) Locations, 2=Even Grid, 3=Uneven ←− option 3
1 1=Point Centered, 2=Block Centered

10.000 8.0000 Maximum X and Y Field Dimensions
7 6 Number of Nodes-X and Nodes-Y

IRSG.GBW Input Filename for grid-block widths ←− new
NONE Mask Filename

1 1=Normal, 2=exp(X), 3=10**(X)
4 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC

0.00000 1.0000 Desired Mean and Variance
5.0000 5.0000 X and Y Direction Correlation Lengths

2 1=Default TBM Parameters, 2=Enter Manually
16 Number of Turning Band Lines

0.31250 TBM Line Discretization Distance
0.25000 Discretization Distance for MA Process
0.00000 0.00000 Field ORIGIN Relative to TBM Origin
12.806 Maximum Turning Band Line Length

IRSG.DAT Output Data Filename
2 1=Unformatted, 2=Formatted Output

(7F8.3) Output Format for Writing Data to Disk
2 1=Single Write Statement, 2=Line at a Time
2 1=First Row to Last, 2=Last Row to First ←− note
2 1=Marsaglia URNG, 2=Machine Indep URNG

52379164 Seed(s) for Random Number Generator
1 Number of Realizations to be Simulated

Output Data for Irregularly-Spaced Grid [IRSG.DAT]

3.303 1.772 2.508 2.091 2.435 0.760 0.130
3.046 1.807 2.838 2.046 2.811 1.471 0.423
2.239 3.421 2.967 2.597 3.109 1.527 0.647
2.110 3.032 3.369 3.055 2.694 1.713 1.356
0.198 2.056 1.271 2.207 1.193 0.166 1.799
0.555 0.358 0.516 0.450 1.418 1.361 0.328

94

Thus, with TUBA version 2.10, there is a new option for the very first question

asked by the code; you are now prompted with the following:

++++++++++++ OUTPUT FIELD PARAMETERS ++++++++++++

(1) - Simulate Only At Specified (x,y) Locations
(2) - Simulate Onto A Regularly Spaced Grid
(3) - Simulate Onto An Unevenly Spaced Grid

When you respond with “3” for the third option above, TUBA will ask for the name of

the file that contains the “grid-block widths”. The file used in this example is named

IRSG.GBW and contains only two lines; the first describes the widths of the grid blocks in

the X-direction while the second describes the grid-block widths along the Y-direction.

In Figure 36 (as well as Figure 21), the 0--10 and 0--8 values on the abscissa and ordi-

nate respectively, are the coordinate values corresponding to the regularly-spaced grid

nodes. Hence, the grid-block widths for this example can be determined by inspection

of Figure 36. Note that the data values listed in IRSG.DAT match exactly the boxed

values shown in Figure 36.

Figure 36. A point-centered, irregularly-spaced finite difference grid.

95

The Ergodicity of the Turning Bands Algorithm

The ergodicity of the Turning Bands algorithm was demonstrated in part, in Sec-

tion 4.3.1. In this example, the “other half” of that demonstration is carried out.

Here, we use the exact same input parameters as was used for the exponential field

in Section 4.2.1, but generate 100 realizations instead of just one. When more than one

simulation is being generated, TUBA writes the mean and variance statistics for the en-

semble of fields at the end of the file. As shown below, the ensemble statistics converge

to the theoretical values. The input and (some of the) output data is listed below.

2 1=(x,y) Locations, 2=Even Grid, 3=Uneven
2 1=Point Centered, 2=Block Centered

100.00 100.00 Maximum X and Y Field Dimensions
100 100 Number of Nodes-X and Nodes-Y

NONE Mask Filename
1 1=Normal, 2=exp(X), 3=10**(X)
1 0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC
1 1=Point Process, 2=Areal Average Process

0.000E+00 0.000E+00 1.000E+00 Desired Mean, Nugget and Sill
20.000 20.000 X and Y Direction Correlation Lengths

16 Number of Turning Band Lines
1 1=Default TBM Parameters, 2=Enter Manually

ERGO.DAT Output Data Filename
1 1=Unformatted, 2=Formatted Output
2 1=Single Write Statement, 2=Line at a Time
2 1=Marsaglia URNG, 2=Machine Indep URNG

57756341 Seed(s) for Random Number Generator
100 Number of Realizations to be Simulated
1 1=Single file output, 2=Multiple files
0 0=do not scale, 1=match T-stats exactly
2 1=Minimal, 2=Med, 3=Frequent screen output

(reflection of TUBA’s internal Turning Bands parameters suppressed)

Simulation Nmbr = 1
Output Filename = ERGO.DAT
New Random Seed = 57756341
The Sample Mean = -0.13424
Sample Variance = 0.80305

Simulation Nmbr = 2
Output Filename = ERGO.DAT
New Random Seed = 10507430
The Sample Mean = 0.71254
Sample Variance = 0.70058

(statistics for fields ERGO.003 through ERGO.098 deleted from the list)

Simulation Nmbr = 99
Output Filename = ERGO.DAT
New Random Seed = 77434250
The Sample Mean = -0.0090872
Sample Variance = 0.78407

Simulation Nmbr = 100
Output Filename = ERGO.DAT
New Random Seed = 35774455
The Sample Mean = 0.60989E-01
Sample Variance = 1.1500

THE ENSEMBLE STATISTICS ...

The Ensemble Mean = -0.036318
Ensemble Variance = 0.98782 ←− Note convergence of

the ensemble statistics

96

http://www.setainc.com
27 Ponderosa Drive, Suite 100

Cedar Crest, New Mexico 87008-9713

geohydrology – risk assessment – litigation support – computer modeling phone: (505) 228-9273

TUBA version 2.11

“A Much More Memory Efficient TUBA”

With this new version of TUBA, the code structure has been modified to reduce the

amount of storage (memory) required to perform the calculations, to permit the generation

of very large data sets and to enable a large number of Turning Band lines to be used.

The changes which are visible to the user include the following new options:

1 For specification of the Turning Band parameters, the user is now
first prompted for the number of Turning Band lines and secondly
prompted for the option to, as before, either accept the remaining
default Turning Band parameters or specify them manually.

2 For specification of the covariance model parameters, the user now
has the option to specify the desired mean and variance for IRF-k
fields generated with the Generalized Covariance model.

3 When simulating multiple fields, the output fields can be written to
multiple files as before (e.g., with filenames such as outname.1, out-
name.2 etc.) or the data for all the fields can be written into a single
file (e.g., outname.dat).

4 An option to specify the level of “progress reporting” during the calcu-
lations has been added; three levels are provided, 1=minimal, 2=more
frequent and 3=very frequent status reporting.

Most of the changes incorporated into version 2.11 were made to enable the generation

of very large fields (many correlation lengths), very dense data sets and the use of many

Turning Band lines. For example, a field of size 1000 x 1000 (one million nodes) was

generated using 256 Turning Band lines – the required dimension of the A array was only

1,018,900 (using a Gaussian covariance function) and the execution time was only 3 hours,

22 minutes on a 486/33 PC! (37 seconds on a 2.2 GHz AMD Athlon XP 3200)

Regards,

D. A. (Tony) Zimmerman

97

Memory Requirements Versus Execution Speed

The manner in which the Turning Bands method calculations are performed in this

version of TUBA involves unformatted direct access Fortran I/O which is the fastest

type of disk access available with Fortran. The generation points (coordinates) of the

output field are saved in a scratch direct access file as this information is accessed

repeatedly (once for each Turning Band line) during execution of the program (A scratch

file is deleted upon termination of the program). In previous versions of TUBA, this

information was kept in memory drastically increasing the amount of memory required to

perform the simulations. In addition, when the areal average process is chosen (currently

programmed only for the exponential covariance model), initialization of the line process

is different for each Turning Band line. Therefore, when areal averaging is used, the line

process calculations are also stored in an unformatted scratch direct-access file.

Because disk I/O is used to store and retrieve this information instead of memory,

this new version of TUBA will be somewhat slower than previous versions. However, for

small fields (say 100 x 100 or less) the overall execution time is so small that the extra

increment of time is inconsequential. For large fields or fields generated with many

Turning Band lines, the amount of memory required under the original computation

scheme would be prohibitive. Hence, this new version of TUBA represents a substantial

improvement in the versatility of the code to simulate random fields.

When running TUBA on a PC under DOS, the slight decrease in execution speed can

be avoided by using a RAMDRIVE and running TUBA on that drive. A RAMDRIVE

is a section of memory that can behaves like a disk drive, i.e., when the data are written

to the scratch file, it is actually written to memory rather than disk. A 20 to 25 percent

increase is speed was observed for fields ranging in size from 125,000 to 500,000 nodes

when TUBA was run from the RAMDRIVE. This approach can also be implemented

on some unix systems.

Specifying Generalized Covariance Model Parameters

When generating Intrinsic Random Fields of Order-k with the Generalized Covariance

(GC) models, the output is now scaled to specified mean and variance values. In earlier

versions, the generated IRF-k values would start at an arbitrary “base level” (zero) and

yield a field with a very high variance.

The formula on page 11 (the one labeled “DO NOT USE THIS”) is used to scale the

generated field values to match the target mean and variance; equation (3) on page 12

can not be used since there is no “original theoretical mean and variance” values specified

for GC models.

98

Thus, for the GC models, the interactive input now looks like the following:

++++++++++++ COVARIANCE PARAMETERS ++++++++++++

Select Type Of Covariance Model:
(0) - User Specified
(1) - Exponential Model
(2) - Gaussian Covariance
(3) - Bessel Type Covariance
(4) - Telis Covariance Function
(5) - Generalized Covariance Model
>>>>> 5

Enter Gen. Covariance Parameters A1,A3,A5
K(r) = A1*r + A3*r**3 + A5*r**5

{ A1,A5.GE.0, A3.GE.-(10/3)*SQRT(A1*A5) }
>>>>> 0.000000 1.00000 0.000000

Enter The Desired Mean And Variance
>>>>> 0.000000 1.00000

Specifying Turning Bands Parameters

As the size of the field (i.e., number of correlation lengths) becomes larger, the number of

Turning Band lines needs to be increased. Although there is no theoretical or empirical

formula for determining precisely how many lines should be used, there has been some

concern raised among geostatisticians (see Section 4.3.6 and Tompson et al., [1989]) with

regard to the presence of “lineaments” appearing in the field when an insufficient number

of lines are used. Therefore, the user must now first prescribe the number of Turning

Band lines to be used, and then choose to either accept the default TBM parameter

values or specify them manually as follows:

++++++++++++ TURNING BANDS PARAMETERS ++++++++++++

Enter The Number Of Turning Band Lines
{ Use At Least 16 }

>>>>> 16

For The Remaining Turning Band Parameters:
(1) - Use Default Turning Band Parameters
(2) - Enter The TBM Parameters Manually
>>>>> 1

New Simulation Parameters Options

The other new options arise during specification of the simulation parameters. In the

example below, all fifty realizations are written to a single file instead of fifty separate

files. This may be more convenient for postprocessing the data with other programs.

Several options are now available for reporting computation progress to the screen.

This provides a way to gage the computational burden and status of a long run. For

example, one may wish to specify minimal reporting for a large multiple simulation run,

more frequent reporting for a field with many Turning Band lines, and very frequent

reporting for very large fields.

99

Thus, the input stream for the simulation parameters now appears as follows:

+++++++++++++ SIMULATION PARAMETERS ++++++++++++++

(1) - Marsaglia and Bray Random Number Generator
(2) - Machine Independent Random Number Generator
>>>>> 2

Enter Integer Seed(s) To Initialize The Generator
{ Seed For This Generator Must Be 8 Digits Long }
>>>>> 12345678

Enter The Number Of Realizations To Be Simulated
>>>>> 50

(1) - All realizations written to one file
(2) - A separate file for each realization

(e.g., file.1, file.2 ... file.99)
>>>>> 1

Specify The Level Of Status Reporting To The Screen
(1) - minimal (e.g., for many realizations)
(2) - more frequent (e.g., for many TBM lines)
(3) - very frequent (e.g., for very large fields)
>>>>> 2

Number Of Elements Allocated In A Array = 50000
Total Storage Required For Computations = 9425
No Of Elements In Excess of Reqirements = 40575
Free Disk Space Needed For Computations = 9.600 Kilobytes

Note also that the A-array storage requirements and the amount of free disk space

required are also listed to the screen and the bottom of the <NAME>.INP file.

Effect of Change in Default Turning Bands Line Discretization Length

In version 2.11, a change was made in subroutine DEFPAR, the subroutine which computes

default Turning Band parameter values. The default discretization length for the white

noise process of the Moving Average algorithm (parameter DS, Telis covariance model)

was changed in accordance with the guidance provided in subroutine TBMPAR.

Mantoglou and Wilson, [1981] point out that the discrete approximation of the co-

variance function involves some error which increases as the discretization length DS

increases. The default DS is now computed so that it is no larger than 1/10th the Turn-

ing Band line discretization interval. As a result of this change, the mean and variance

statistics of Telis fields shown in the manual (pages 45, 66, 67, 74 and 89) will not match

those output by TUBA version 2.11 nor will the fields look the same. However, the

examples in the manual are intended only for illustrative purposes and for instruction

on how to properly apply the code.

100

Chapter 5

Programmer’s Manual

This chapter is intended to provide a brief description of the TUBA computer code

that will enable computer programmers to decipher the algorithms and make whatever

changes may be necessary to accomodate the local computing environment. Code seg-

ments which may not be standard on every computer operating system are discussed

and certain operational features of the code are explained.

TUBA was originally written in Fortran IV for batch processing on an IBM com-

puter. During the 1988 – 1990 revision process, the code was completely reorganized,

modified to take advantage of Fortran 77 programming features, and written in a style

amenable for both batch or interactive processing. TUBA should, without modification,

or with possibly only minor modifications, compile and run on almost any computer

operating system; it has been tested under VMS, Solaris, HPUX, Linux, Macs and PC’s

running Windows (all flavors).

§§ 5.1 Redimensioning

A problem commonly encountered when implementing a new code is figuring out how

to properly change the dimension statements for your particular application. With

TUBA this is not a problem; there is only one array in TUBA, and the code tells you

during execution the required dimension size for the problem you are running. The

first dimension statement in the main program declares the variable A as an array of

length LGTH where LGTH is defined as a parameter set to some arbitrarily large value,

say, LGTH = 999000. If the allocated storage space is insufficient, program execution halts

and a message is issued instructing the user to recompile the program with LGTH set to

the required size. To run TUBA in the DOS operating environment, LGTH must be set

to a much smaller value (say LGTH ≈ 116000) because of DOS memory constraints †.

Individual arrays are accessed through “array pointers” which are integer variables

that indicate the starting location of each array within the A array. This technique

enables all data to be efficiently stored and retrieved and it allows the generation of

fields of varying grid sizes without having to adjust the array dimensions. The addresses

(array pointer values) of the arrays are calculated in subroutine ADDRES.

† More recent Fortran compilers for DOS are not limited to 640K of RAM.

101

§§ 5.2 Code Structure and Programming Notes

TUBA has been modularized almost to the extreme – the reason for coding it this way

is simply style; it is the author’s belief that each module or subroutine should perform

a single task which is easily identifiable by examining the code. Usually, a one line

comment just under the subroutine declaration is sufficient to describe the purpose of

the module; an understanding of how the module’s objective is accomplished can be

obtained by examining the code. Because each module is short, there should be little

difficulty developing an understanding of what each module’s function is and how the

task is performed. The order in which the various computational tasks are performed in

TUBA is shown in Figure 37. Routines not shown include RDCHAR, RDINTG, RDREAL,

NCHR, COMENT, PROGSS, URN55, URNSS and URNMB; these are general purpose utility

modules whose function can be determined by examining the respective code listings.

Subroutines in the code listing are arranged alphabetically.

TUBA is written in a style that is intended to facilitate one’s comprehension of the

computational tasks. Nevertheless, there may be some programming techniques used

that appear to be somewhat obscure. Understanding how some of these techniques are

used will better enable one to follow the code and/or make code modifications if desired.

The manner in which arrays are passed to subroutines was discussed in section 5.1.

Subroutines RDINTG and RDREAL are used to read and reflect integer and real input data

respectively. These routines read the input data into an integer or real array which is

passed in the argument list of the subroutines (RDREAL is actually an ENTRY statement

in subroutine RDINTG). The calling program, however, doesn’t pass an array, rather, it

passes a scalar variable which is in common with the other variables that the program

is attempting to read. For example, NX and NY (the nodal field dimensions for a gridded

output field) are placed next to each other in the labeled common statement, /TBMPAR/,

and are read at the same time even though only NX is passed in the call to subroutine

RDINTG (this particular call is made in subroutine FLDPAR).

The manner in which the “card file” <NAME>.INP is created can be determined

by examining the LSTINP subroutine. TUBA creates this card file as it is being run

interactively; the file can then be used later for batch processing, or interactive processing

with redirected input. As input parameters are read (via subroutines RDINTG, RDREAL,

RDCHAR), they are written to a scratch file and annotated (subroutine COMENT provides

the annotations); after all the input data are read and the internal parameters are

calculated, the input data and their annotations are reread from the scratch file and

written out along with the internal parameters to the <NAME>.INP file.

102

MAIN - main program; driver which calls all of TUBA’s subroutines

RDINPT - control module for reading input parameters

FLDPAR - read output field parameters

COVPAR - read covariance model parameters

TBMPAR - read Turning Band parameters

DEFPAR - calculate default Turning Band parameters

ORGMAX - calculate TB origin and max TB line length

SIMPAR - read simulation parameters

UNITMB - initialize Marsaglia and Bray random number generator

UNITSS - initialize Swain and Swain random number generator

INTPAR - calculate internal Turning Band and covariance parameters

LSTINP - list the input data and some internal parameters

ADDRES - calculate array addresses (array pointer values)

CALXYP - calculate (x,y) projection point parameters

CALXYC - calculate (x,y) coordinates for gridded output

CALINP - calculate line process array data

SPDF - spectral density function for various covariance models

WTEXP - calculate weights for exponential areal average process

WTUSR - calculate weights for user-defined areal average process

BEGIN DO LOOP - repeat this loop for each simulation

SPCTRL - spectral generation of line process

FFTGEN - driver for FFT line process generation algorithym

FFT - Fast Fourier Transform algorithm

MOVAVG - moving average generation of the line process

WNRLVY - Weiner-Levy generation of the line process

PROJCT - project line process data onto the output field

PROJSB - utility subroutine called by PROJCT

OUTPUT - write field(s) to the output file(s)

FSCALE - final scaling and mean and variance calculations

OPNFIL - open output file and list random field statistics

END DO LOOP

Figure 37. Order of subroutine calls in TUBA.

103

Miscellaneous Programming Notes

Some compilers may issue a warning when variable types of subroutine arguments are

mismatched between the calling program and the subroutine itself. For example, sub-

routine SPCTRL passes a real array, DZ, to subroutine FFTGEN; in FFTGEN, the DZ array

is declared complex. Any non-fatal compiler error or warning message concerning this

may be ignored.

When unformatted output is requested, the open statement for the output data file

contains a record-length specifier (LREC). The variable LREC is the maximum required

record-length size (in bytes); LREC is calculated in subroutine OUTPUT while the open

statement is located in subroutine OPNFIL. Depending on the compiler being used, the

record-length specifier may be ommitted and may, if not omitted, cause a compiler error.

Also, on some compilers, the record-length specifier may refer to the number of words

in the record rather than the number of bytes.

§§ 5.3 Random Number Generators and the Fast Fourier Transform

In many instances, codes which require special mathematical or statistical calculations

rely on “packaged software” such as IMSL (International Math and Science Library)

or SAS (Statistical Analysis Software). TUBA is a “self-contained code” in that no

additional librarys or subroutines need to be linked in order to make it run on any

computer system. The source code for special mathematical or statistical computations

is included in the program listing. Two of these, random number generation and the

discrete Fast Fourier Transform (FFT), are discussed below.

Two random number generators are included in the TUBA code, one is machine

dependent, the other machine independent. References for each are listed in the source

code; both have been tested extensively with the TESTRAND code (Dudewicz and Rally

[1981]), and both were modified slightly from their original form. The modifications

were made so that both the generator initialization and the random number generation

are contained in one module and so that each generator returns uniformly distributed

random numbers on the interval [−0.5,+0.5] rather than on [0, 1].

The machine dependent generator (algorithm of Marsaglia and Bray presented on

pages 567 and 597 of Dudewicz and Rally [1981]) was “recommended for practical use”

by the above authors; it passed very sensitive and exhaustive testing. This generator

relies on integer-overflow arithmetic where the high-order bits of an integer product

are ignored if the number of bits required to represent the product is greater than the

number of bits in the integer word size. On some compilers, this action may result in

a run-time error unless the code is compiled with the “integer overflow check” compiler

switch turned off.

104

The machine independent generator (Swain and Swain [1980]) failed the rigorous

Chi-square on Chi-square test performed by the TESTRAND code. However, this test

is an extremely sensitive test and failure does not preclude its use for the generation

of random fields. A plot of Xj versus Xi where j = i + 1 and the Xi are random

numbers produced with this generator is shown in Figure 37. This plot represents a kind

of graphical test of whether the deviates are sequentially correlated; the plot shows a

uniform scattering of points with no “holes” indicating that the deviates are uncorrelated

and uniformly distributed. This generator uses integer arithmetic (without overflow)

such that random number sequences can be reproduced exactly on different machines

with different compilers and different word sizes. All the random fields generated in this

manual were generated using the Swain and Swain random number generator.

The discrete Fast Fourier Transform (FFT) algorithm is used for calculating the spec-

trum of the line processes for some of the stationary covariance models. The algorithm

used in TUBA was taken from Gonzales [1987]; the routine was modified slightly to

enable it to calculate both forward and inverse transforms. Note that the transform al-

gorithm is only valid for arrays of length equal to 2n for some n. The routine was verified

by comparing its results with those obtained using FFT routines from the IMSL library.

§§ 5.4 User-defined Covariance Models

Covariance models other than those described in this manual can be used to generate

stationary random fields having either point or areal average properties; the line process

for the user-defined covariance model can be generated using either a spectral method

or a moving average method. The one-dimensional spectrum of the user-defined covari-

ance model must be coded and inserted into TUBA; additional coding is required for

implementing the moving average method or the areal average process.

Code for the one-dimensional spectrum must be inserted into function SPDF (see

annotations in the code listing). If areal averaging is to be used, code for calculating the

areal average weights (see section 2.6) must be inserted into function WTUSR. If a user-

defined moving average method is used, the moving average weights (see section 2.4)

must be calculated in subroutine CALINP and stored in the FF array. Also, variable

CLN in subroutine INTPAR must be set equal to some value representing the number of

correlations lengths the moving average weighting function is substantially non-zero.

105

Figure 38. Graphical “test” of random number generator showing a
uniform coverage of the data interval.

106

References

Abramowitz, M. and I. A. Stegun, 1964. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied
Mathematics Series · 55, U.S. Government Printing Office, Wash. D.C.

Bakr, A. A., Gelhar, L. W., Gutjahr, A. L. and J. R. MacMillan, 1978. Stochastic
analysis of spatial variability in subsurface flows, 1. Comparison of one- and three-

dimensional flows, Water Resour. Res., 14(2), 263–271.

Box, G. E. P. and G. M. Jenkins, 1970. Time Series Analysis, Forcasting, and Control ,
Holden-Day, Inc., San Francisco, CA.

Bras, R. L. and I. Rodriguez-Iturbe, 1984. Random Functions and Hydrology, Addison-
Wesley Publishing Co., Reading, MA.

Delfiner, P., 1976. Linear estimation of nonstationary spatial phenomena, In Advanced

Geostatistics in the Mining Industry, edited by M. Guarascio, M. David and CH. J.
Huijbregts, D. Reidel Pub. Co., Hingham, MA.

Delfiner, P., 1978. “The intrinsic model of order k”, summer school notes, Centre de
Gèostatistique, Fountainbleau, France.

Delhomme, J. P, 1979. Spatial variability and uncertainty in groundwater flow parame-

ters: A geostatistical approach, Water Resour. Res., 15(2) 269–280.

Dudewicz, E. J. and T. G. Ralley, 1981. The Handbook of Random Number Generation
and Testing with the TESTRAND Computer Code, American Sciences Press, Inc.

Freyberg, D. L. and T. C. Black, 1987. “Simulation of one-dimensional correlated fields
using a matrix-factorization moving average approach”, Dept. Civ. Eng., Stanford

University, Stanford, CA.

Frind, E. O., Sudicky, E. A. and S. Schellenberg, 1987. Micro-scale modelling in the
study of plume evolution in heterogeneous media, Stochastic Hydrology and Hydraulics,
1 , 263–279.

Gelhar, L. W., 1984. Stochastic analysis of flow in heterogeneous porous media, In
Fundamentals of Transport in Porous Media, J. Bear and M. Corapcioglu, eds., Martinus

Nijhof, Dordrecht, Netherlands.

Gomez-Hernandez, J. J. and S. M. Gorelick, 1989. Effective groundwater model pa-
rameter values: Influence of spatial variability of hydraulic conductivity, leakage, and
recharge, Water Resour. Res., 25(3), 405–429.

107

Gonzales, R. C., 1987. Digital Image Processing, Addison-Wesley Pubishing Co., Read-
ing, MA.

Gutjahr, A. L., 1989. “Fast fourier transforms for random field generation, Project
report for Los Alamos Grant to New Mexico Tech”, Dept. Mathematics, New Mexico
Institute of Mining and Technology, Socorro, NM.

Jenkins, G. M. and D. G. Watts, 1968. Spectral Analysis and its Applications, Holden-

Day, Inc., Oakland, CA.

Journel, A. G, 1974. Geostatistics for conditional simulation of ore bodies, Econ. Geol.,
69 , 673–687.

Journel, A. G. and CH. J. Huijbregts, 1978. Mining Geostatistics, Academic Press,
New York, NY.

Kafritsas, J. and R. L. Bras, 1981. The practice of kriging, Tech. Rep. No. 263 , Dept.
Civ. Eng., Massachusetts Institute of Technology, Cambridge, MA.

Kafritsas, J. and R. L. Bras, 1984. The practice of kriging (second edition), Tech. Rep.
No. 263 , Dept. Civ. Eng., Massachusetts Institute of Technology, Cambridge, MA.

Kueper, B. H., McWhorter, D. B. and E. O. Frind, 1989. The behavior of dense non-
aqueous phase liquid contaminants in heterogeneous porous media, In Proceedings Intl.

Sym. on Contaminant Transport in Groundwater , Stuttgart, Germany.

Kueper, B. H., E. O. Frind and McWhorter, D. B., 1990. Application of a numerical
model and laboratory parameter measurement to the movement of dense, immiscible
phase liquids in a heterogeneous sand aquifer, In Proceedings of Conf. on Subsurface

Contamination by Immiscible Fluids, Calgary, Alberta, Canada.

Longman, I. M., 1956. Note on a method for computing infinite integrals of oscillatory
functions, Proc. Cambridge Philos. Soc., 52(4), 764–768.

MacQuarrie, K. T. B. and E. A. Sudicky, 1989. Simulation of biodegradable organic
contaminants in groundwater, 2. Plume behavior in uniform and random flow fields,

Water Resour. Res., 26(2), 95–110.

Mantoglou, A. and J. L. Wilson, 1981. Simulation of random fields with the Turning
Bands Method, Tech. Rep. No. 264 , Dept. Civ. Eng., Massachusetts Institute of
Technology, Cambridge, MA.

Mantoglou, A. and J. L. Wilson, 1982. The Turning Bands method for simulation of

random fields using line generation by a spectral method, Water Resour. Res., 18(5),
1379–1394.

Matheron, G., 1973. Intrinsic random functions and their applications, Adv. Appl.
Prob., 5 , 439–468.

108

Mejia, J. and I. Rodriguez-Iturbe, 1974. On the synthesis of random fields from the spec-
trum: An application to the generation of hydrologic spatial processes, Water Resour.
Res., 10(4), 705–711.

Mizell, S. A., Gutjahr, A. L. and L. W. Gelhar, 1982. Stochastic analysis of spatial
variability in two-dimensional steady groundwater flow assumming stationary and non-

stationary heads, Water Resour. Res., 18(4), 1053–1067.

Molissis, D., 1988. Simulation of viscous fingering during miscible displacement in
nonuniform porous media, Ph.D. dissertation, Rice University, Houstin, TX.

Munoz-Pardo, J. and M. Vauclin, 1987. Evaluation of different sampling schemes
through the simulation of two-dimensional random fields by the Turning Bands method.

In Transactions, American Geophysical Union, 68(44).

Neuman, S. P., 1982. Statistical characterization of aquifer heterogenieties: An overview,
Geol. Soc. Am. Spec. Pap., 184 , 81–102.

Peterson, D. M. and J. L. Wilson, 1988. Variably saturated flow between streams and
aquifers, New Mexico Water Resour. Res. Inst., Tech. Rep. No. 233 , Las Cruces, NM.

Rubin, Y. and J. J. Gomez-Hernandez, 1990. A stochastic approach to the problem

of upscaling of conductivity in disordered media: Theory and unconditional numerical
simulations, Water Resour. Res., 26(4), 691–701.

Sampier, F. J. and S. P. Neuman, 1989. Estimation of spatial covariance structures
by adjoint state maximum likelihood cross-validation, 2 synthetic experiments, Water

Resour. Res., 25(3), 363–371.

Shinozuka, M. and C. M. Jan, 1972. Digital simulation of random processes and its
applications, J. Sound Vib., 25(1), 111-128.

Shumway, R. H., 1988. Applied Statistical Time Series Analysis, Prentice Hall, Engle-
wood Cliffs, NJ.

Smith, L. and R. A. Freeze, 1979. Stochastic analysis of steady state groundwater

flow in a bounded domain, 1. One-dimensional simulations, Water Resour. Res., 15(3),
521–528.

Smith, L. and F. W. Schwartz, 1981. Mass transport 2. Analysis of uncertainty in
prediction, Water Resour. Res., 17(2) 351–369.

Sudicky, E. A., Schellenberg, S. L. and K. T. B. MacQuarrie, 1989. Assessment of

the behavior of conservative and biodegradable solutes in heterogeneous porous me-
dia, In Dynamics of Fluids in Hierarchial Porous Formations, J. H. Cushman (editor),
Academic Press, 1990.

109

Sudicky, E. A. and K. T. B. MacQuarrie, 1989. Behavior of biodegradable organic
contaminants in random stationary hydraulic conductivity fields, In Proceedings Intl.
Sym. on Contaminant Transport in Groundwater , Stuttgart, Germany.

Swain, C. G. and M. S. Swain, 1980. A uniform random number generator that is
reproducible, hardware-independent, and fast, J. Chem. Inf. Comput. Sci., 20 , 56–58.

Tompson, F. B., Ababou, R. and L. W. Gelhar, 1987. Application and use of the three-

dimensional Turning Bands random field generator: Single realization problems, Tech.
Rep. No. 313 , Dept. Civ. Eng., Massachusetts Institute of Technology, Cambridge, MA.

Tompson, F. B., Ababou, R. and L. W. Gelhar, 1989. Implementation of the three-
dimensional Turning Bands random field generator, Water Resour. Res., 25(10),

2227–2244.

Vanmarke, E, 1984. Random Fields, Analysis and Synthesis, The MIT press, Cambridge,
MA.

Wagner, B. J. and S. M. Gorelick, 1989. Reliable aquifer remediation in the presence
of spatially variable hydraulic conductivity: From data to design, Water Resour. Res.,

25(10), 2211–2225.

Warren, J. E. and H. S. Price, 1961. Flow in heterogeneous porous media, Soc. Petrol.
Eng. J., 1 , 153–169.

Zimmerman, D. A., Wilson, J. L. and A. L. Gutjahr, 1987. Cosimulation of random
fields: Groundwater heads and conductivities, In Transactions, American Geophysical

Union, 68(44).

Zimmerman, D. A., Gutjahr, A. L. and J. L. Wilson, 1988. A new technique for ob-
taining stochastic predictions of groundwater flow through heterogeneous porous media:
Cosimulation of heads and log-transmissivities using a numerical spectral-perturbation
method, Open File Report 88-4 , Hydrology Program, New Mexico Institute of Mining

and Technology, Socorro, NM.

110

Appendix A

A Reprint of

Mantoglou and WilsonMantoglou and WilsonMantoglou and Wilson, [1982]

Appendix B

TUBA version 2.11d
Computer Code Listing

PROGRAM TUBA
C--C
C Main program module for TUBA, Version 2.11d C
C--C
C TUBA revision history ... C
C ver 2.0 - originally released in July, 1990 (see manual) C
C ver 2.10 - allows reproduction of individual fields from an ensemble; C
C generation onto irregularly-space finite difference grids C
C ver 2.11 - never released (essentially a beta test version) C
C Much more memory efficient; mean and variance for GCF; C
C computation progress flag; change in the default line C
C discretization length and bug fix (see page 116) C
C to be consistent with guidelines given in Chapter 3. C
C Option for multiple realizations into 1 or many files C
C ver 2.11a - same as ver 2.11 but with improved "status reporting" C
C over beta version 2.11 C
C ver 2.11b - shortens line process discretization length for the C
C spectral-based covariance models (by factor of .01) C
C ver 2.11c - has option to match the desired mean and variance stats C
C exactly and a bug fix for use with mask file option C
C ver 2.11d - has option to allow for a nugget effect in the field(s) C
C Not asked for desired mean and variance for GC model C
C unless scaling to match desired stats option invoked. C
C C
C NOTE: because of changes in line-discretization length parameters C
C described above for updates 2.11 and 2.11b, THE MEAN AND C
C VARIANCE STATISTICS WILL NOT MATCH THE EXAMPLES PRINTED IN C
C THE MANUAL, however, the examples are intended only for illus- C
C trative purposes on how to properly apply the code. C
C--C
C For Documentation, see: C
C C
C Zimmerman, D. A. and John L. Wilson. July, 1990 C
C "Description of and User’s Manual for TUBA: C
C A Computer Code for Generating Two-dimensional Random Fields C
C via the Turning Bands Method" C
C C
C Published by C
C C
C SETA, Inc. C
C 27 Ponderosa Drive, Suite 100 C
C Cedar Crest, New Mexico 87153 USA C
C http://www.setainc.com C
C--C
C TUBA version 2.0 was developed in the C
C Geoscience Department (Hydrology Program) C
C New Mexico Institute of Mining and Technology, C
C Socorro, New Mexico 87801 USA C
C--C
C This version has WRITE(IT,*) statements after every input query be- C
C cause Lahey Fortran apparently does not add the <cr> automatically. C
C--C
C INCLUDE FILE FOR TUBA VERSION 2.11d C
C COMMON /TBAPAR/ ICOVF,IPAA,LINES,FMAX,NHAR,NMAX,UN,FX,FY, C
C 1 XO,YO,TBMX,KS,IP,NX,NY,XMAX,YMAX,DX,DY,NXY, AM,AN,AV,CLX,CLY, C
C 1 IDFP,IURN, DS,UD,KD,NR,CK,FM,FA, A1,A3,A5,KT,DT,SG,B0,B1,B2, C
C 1 NF,IPF,SAJ,IULP,MSK,IMSEX C
C--C
C LOGICAL UNIT IDENTIFIERS C
C IN = standard input - terminal (generally, this will be unit 5) C
C IT = standard output - terminal (generally, this will be unit 6) C
C IL = listing file unit C
C IO = output data unit C
C L1 = used for reading (x,y) points, mask file data, then for storing C
C the (x,y) generation points in direct access file for gridded fields C
C L2 = used for areal average processes - stores line process data for C
C each line in direct access file (to reduce memory requirements) C
C--C

PARAMETER (IN=5,IT=6,IL=7,IO=20,L1=21,L2=22,LGTH=199000)
COMPLEX C(LGTH/2)
REAL A(LGTH)
EQUIVALENCE (A,C)

INCLUDE ’tuba211d.inc’
COMMON /PGPARS/ PCL,IPG

B.1

COMMON /ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ,
1 LS1,LS2,LC1,LC2

C READ INPUT AND OUTPUT PARAMETERS
CALL RDINPT(IN,IT,IL,L1,A(1),A(1),MODEL,NLINE,NSIM)

C CALCULATE INTERNAL PARAMETERS
CALL INTPAR(A(1))

C CREATE THE <NAME>.INP CARD FILE
CALL LSTINP(IL)

C CALCULATE "ADDRESSES" OF ARRAY POINTERS
CALL ADDRES(IT,IL,LGTH)

C CALCULATE (X,Y) POINT PROJECTIONS ONTO THE TBM LINES
CALL CALXYP(IT,L1,A(LXY),A(LZM),A(LSS),A(LCC),A(LPP))

C CALCULATION OF LINE PROCESS ARRAY DATA
CALL CALINP(IT,L2,A(LPA),A(LSS),A(LCC),A(LS1),A(LC1),A(LFF))

C BEGIN SIMULATING THE RANDOM FIELD(S)
DO 20 ISIM=1,NSIM
WRITE(IT,*)
IF(NSIM.GT.1) CALL PROGSS(’ SIMULATION NUMBER ...’,

1 IT,ISIM,NSIM,5)
PCLSAV = PCL
IPGSAV = IPG
CALL RESEED(ISIM,NUSEED)
DO 10 L=1,NLINE
IF(MODEL.LE.3) CALL SPCTRL(L,L2,A(LPA),A(LZ1),C(LDZ/2+1),

1 A(LS1),A(LC1),A(LS2),A(LC2))
IF(MODEL.EQ.4) CALL MOVAVG(A(LTT),A(LZ1),A(LFF))
IF(MODEL.EQ.5) CALL WNRLVY(A(LZ1))
CALL PROJCT(L,IT,L1,A(LXY),A(LPP),A(LSS),A(LCC),A(LZZ),

1 A(LZM),A(LZ1))
10 CONTINUE

CALL OUTPUT(IT,IL,IO,ISIM,NSIM,A(LXY),A(LZZ),A(LZM),NUSEED)
PCL = PCLSAV

20 CONTINUE

STOP
END

BLOCK DATA
C--
C INITIALIZE DATA FOR VARIABLES IN LABELED COMMON STATEMENTS

INCLUDE ’tuba211d.inc’

Comt COMMON /SEEDS/ needed by URNITMB
COMMON /SEEDS/ ML,MM,MK,L,M,K

Comt COMMON /ADRSES/ needed by ADDRES, MAIN
COMMON /ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ,

1 LS1,LS2,LC1,LC2

Comt COMMON /IRSGRD/ needed by DEFPAR, FLDPAR
COMMON /IRSGRD/ GXMIN,GYMIN

Comt DATA L, M, K and ML, MM, MK needed by URNITMB
DATA L, M, K /089347405, 301467177, 240420681/
DATA ML,MM,MK /65539, 33554433, 36243609/

Comt DATA LS1,LS2 ... needed by ADRSES
DATA LS1,LS2,LC1,LC2 /1,1,1,1/, MSK /0/

Comt DATA FM,FA,AM .. needed by INTPAR
DATA FM,FA,AM,AN,AV,CLX,CLY /1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0/

Comt DATA GXMIN,GYMIN needed by FLDPAR
DATA GXMIN,GYMIN /1.E+15,1.E+15/

END

B.2

SUBROUTINE ADDRES(IT,IL,LGTH)
C--
C CALCULATE ADDRESSES OF ARRAY POINTERS

C LXY,LPP,LPA, ETC. ARE THE "ADDRESSES" OF THE XY,PP,PA ARRAYS IN
C THE ONE DIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,Y)
C LOCATIONS (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED
C AT THE BEGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO
C (MUTUALLY EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A.

INCLUDE ’tuba211d.inc’
CHARACTER BITES*10
COMMON /ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ,

1 LS1,LS2,LC1,LC2
Comt SEE BLOCK DATA MODULE
Comt DATA LS1,LS2,LC1,LC2 /1,1,1,1/

IGS = 0
KSS = MIN(2,KS)
IF(KS.GT.1) NXY = NX*NY
IF(KS.EQ.3) IGS = NX+NY
LXY = 1
LZM = 1 + IGS
LPP = (2-KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS
LPA = LPP + 2*(KSS-1)*NX
LZ1 = LPA + NHAR
LZZ = LZ1 + MAX(NMAX,NHAR)
LSS = LZZ + NXY
LCC = LSS + LINES
LFF = LCC + LINES
LTT = LFF + KD
LDZ = LTT + NR
LRQ = LDZ + 2*NHAR

C THESE ARRAYS ARE FOR SHINOZUKA AND JAN METHOD
IF(ICOVF.LE.3 .AND. ISAJ.EQ.1) THEN
LS1 = LTT + NR
LC1 = LS1 + NHAR
LS2 = LC1 + NHAR
LC2 = LS2 + NHAR
LRQ = LC2 + NHAR

END IF

C DIRECT ACCESS FILES USE AN ADDITIONAL 8 BYTES PER RECORD
C BXY = BYTES FOR (X,Y) DATA; BAA = BYTES FOR AREAL AVERAGE DATA

BXY = (4*(2*NXY) + 8*NY)
BAA = (4*NHAR*LINES + 8*LINES) * (IPAA-1)
FDS = (BXY + BAA) * 1.E-06
BITES = ’ Megabytes’
IF(FDS.LT.1) THEN
BITES = ’ Kilobytes’
FDS = 1000 * FDS

END IF
WRITE(IT,10) LGTH,LRQ,LGTH-LRQ,FDS,BITES
WRITE(IL,10) LGTH,LRQ,LGTH-LRQ,FDS,BITES

10 FORMAT(/’ Number Of Elements Allocated In A Array =’,I9,
1 /’ Total Storage Required For Computations =’,I9,
1 /’ No Of Elements In Excess of Reqirements =’,I9,/’ Free’,
1 ’ Disk Space Needed For Computations =’,F9.3,A,/)

IF(LRQ.LT.0 .AND. IDFP.EQ.2) WRITE(IT,15)
15 FORMAT(’ ***** err, integer overflow - you may be specifying’,

1 /’ the Turning Band line parameters improperly.’,
2 /’ Recheck Turning Band parameter input values’)

C The following should NEVER occur
IF(LRQ.LT.0 .AND. IDFP.EQ.1) WRITE(IT,16)

16 FORMAT(’ ***** err, integer overflow - contact code author’,
1 /’ send email message to: dazimme@somnet.sandia.gov’)
IF(LRQ.GT.LGTH) WRITE(IT,20)

20 FORMAT(’ ***** err, Insufficient Storage (Dimension of A Array)’,
1 /’ Increase Parameter LGTH in main program’)

IF(LRQ.GT.LGTH) STOP

RETURN
END

B.3

SUBROUTINE CALINP(IT,L2,PA,SS,CC,S1,C1,FF)
C---
C CALCULATION OF ARRAY DATA NEEDED FOR LINE PROCESS GENERATION

REAL PA(*), SS(*), CC(*), S1(*), C1(*), FF(*)
INCLUDE ’tuba211d.inc’
COMMON /PGPARS/ PCL,IPG
CHARACTER LPMA*47,LPSM*43,LPTB*43,LPSP*47
DATA LPMA /’ Calculating Line Process Data ... (MA Process)’/
DATA LPSM /’ Calculating Line Process Data ... Harmonic’/
DATA LPTB /’ Calculating Line Process Data ... Line No’/
DATA LPSP /’ Calculating Line Process Data ... (Spectral)’/

C NO ARRAY DATA NEEDED FOR NON-STATIONARY GENERALIZED COVARIANCE MODELS
C GC MODEL LINE PROCESS PARAMETERS CALCULATED IN SUBROUTINE INTPAR

IF(ICOVF.EQ.5) RETURN
Comt WRITE(IT,*)’Calculating Line Process Data ... (GC Models)’

C MOVING AVERAGE GENERATION OF THE LINE PROCESS
IF(IULP.EQ.2) THEN

C USER-DEFINED MOVING AVERAGE ALGORITHM GOES HERE
C THE FF ARRAY CONTAINS THE MOVING AVERAGE WEIGHTS
C SEE SECTIONS 2.4 AND 5.4 OF THE USER’S MANUAL
Comt WRITE(IT,*)’ Calculating Line Process Data ... (MA Process)’

IF(IPF.GE.2) WRITE(IT,’(A)’) LPMA
CK = 1.0
RETURN

END IF

C MOVING AVERAGE GENERATION OF THE LINE PROCESS (TELIS COVARIANCE)
IF(ICOVF.EQ.4) THEN

Comt WRITE(IT,*)’ Calculating Line Process Data ... (MA Process)’
IF(IPF.GE.2) WRITE(IT,’(A)’) LPMA
DO 10 K=1,KD
XT = DS*FLOAT(K-1)
FF(K) = (1.-XT)*EXP(-XT)

10 CONTINUE
CX = 1.-EXP(-2.*DS)
CK = SQRT(12.*CX*CX/(CX-DS*EXP(-2.*DS)))
RETURN

END IF

C SPECTRAL GENERATION OF THE LINE PROCESS (SAJ AND FFT METHODS)
AX = FX/CLX
AY = FY/CLY
DOM = FMAX/FLOAT(NHAR)
DLM = 0.1*DOM
IF(IPF.EQ.1) WRITE(IT,’(A)’) LPSP
IF(IPAA.EQ.2) GO TO 33

C line generation for POINT processes ...
DO 20 M=1,NHAR

Comt CALL PROGSS(’ Calculating Line Process Data ... Harmonic’,
IF(IPF.GE.2) CALL PROGSS(LPSM,IT,M,NHAR,20)
OM = (FLOAT(M)-0.5)*DOM
SPEC = SPDF(OM,ICOVF)*DOM

C This if block pertains only to the Shinozuka and Jan method
IF(ISAJ.EQ.1) THEN
OMM = OM + URN55()*DLM
C1(M) = COS(OMM*UN)
S1(M) = SIN(OMM*UN)
SPEC = 2.0*SQRT(SPEC)

END IF
PA(M) = SPEC

20 CONTINUE
RETURN

C line generation for AREAL AVERAGE processes ...
33 LREC = 4*NHAR

OPEN(UNIT=L2,STATUS=’SCRATCH’,ACCESS=’DIRECT’,RECL=LREC,
1 FORM=’UNFORMATTED’)
DO 40 L=1,LINES
IF(IPF.GE.2) CALL PROGSS(LPTB,IT,L,LINES,10)

comt IF(IPF.EQ.2) CALL PROGSS(LPTB,IT,L,LINES,10)
comt IF(IPF.EQ.3) CALL PROGSS(’ Turning Band Line ...’,IT,L,LINES,10)
comt PCLSAV = PCL

B.4

comt IPGSAV = IPG
DO 30 M=1,NHAR

Comt CALL PROGSS(’ Calculating Line Process Data ... Harmonic’,
comt IF(IPF*IPGSAV.EQ.3) CALL PROGSS(LPSM,IT,M,NHAR,20)

OM = (FLOAT(M)-0.5)*DOM
SPEC = SPDF(OM,ICOVF)*DOM

C This if block pertains only to the Shinozuka and Jan method
IF(ISAJ.EQ.1) THEN
OMM = OM + URN55()*DLM
C1(M) = COS(OMM*UN)
S1(M) = SIN(OMM*UN)
SPEC = 2.0*SQRT(SPEC)

END IF
AC = CC(L)
AS = SS(L)
IF(ICOVF.EQ.0) AASD = WTUSR(OM,AC,AS,AX,AY)*SPEC
IF(ICOVF.EQ.1) AASD = WTEXP(OM,AC,AS,AX,AY)*SPEC
IF(ISAJ .EQ.1) AASD = 2.*SQRT(AASD)
PA(M) = AASD

30 CONTINUE
WRITE(UNIT=L2,REC=L) (PA(M),M=1,NHAR)

comt PCL = PCLSAV
40 CONTINUE

RETURN
END

SUBROUTINE CALXYC(K,GS,X,Y)
C---
C CALCULATE (x,y) COORDINATES FOR GRIDDED OUTPUT

REAL GS(*)
INCLUDE ’tuba211d.inc’

C KS = 1 OUTPUT AT SPECIFIED (X,Y) LOCATIONS
C KS = 2 OUTPUT ONTO A BLOCK OR POINT CENTERED REGULARLY SPACED GRID
C KS = 3 OUTPUT ONTO A BLOCK OR POINT CENTERED IRREGULARLY SPACED GRID
C IP = 1 POINT CENTERED GRID, IP = 2 BLOCK CENTERED GRID

C DECODE I AND J INDICES FROM SINGLE INDEX REFERENCE
J = K/NX + 1
IF(MOD(K,NX).EQ.0) J = J - 1
I = K - (J-1)*NX
V = 1.0/FLOAT(IP)
IF(KS.EQ.2) X = (I-V)*DX
IF(KS.EQ.2) Y = (J-V)*DY
IF(KS.EQ.3) THEN
X = 0
Y = 0
DO 10 II=1,I-1

10 X = X + GS(II)

X = X + (1-V)*GS(I)
DO 20 JJ=1,J-1

20 Y = Y + GS(NX+JJ)
Y = Y + (1-V)*GS(NX+J)

END IF

RETURN
END

SUBROUTINE CALXYP(IT,IU,GS,ZM,SS,CC,PP)
C---
C CALCULATE (X,Y) POINT PROJECTIONS ONTO THE TBM LINES

PARAMETER (PI=3.141592654)
REAL CC(*), SS(*), GS(*), ZM(*), PP(2,*)
INCLUDE ’tuba211d.inc’
CHARACTER PPCS*43
DATA PPCS /’ Calculating Projection Points ... Point No’/

B.5

C CALCULATE SINES AND COSINES OF TBM LINE ANGLES
DTHA = PI/FLOAT(LINES)
TNOT = URN55() * 2.0*PI
DO 10 L=1,LINES
THETA = FLOAT(L)*DTHA + TNOT
CC(L) = COS(THETA)
SS(L) = SIN(THETA)

10 CONTINUE

C NORMALIZED PROJECTON POINTS FOR KS=1 OBTAINED IN SUBROUTINE PROJCT
IF(KS.EQ.1) THEN
WRITE(IT,*)’Projection Points Not Calculated -> Read as Input’
WRITE(IT,*)’Projection Points = (x,y) Field Generation Points’
IF(IULP.EQ.2 .OR. ICOVF.GE.4) WRITE(IT,*)
RETURN

END IF

C CALCULATE AND STORE THE NORMALIZED (X,Y) PROJECTION POINTS FOR GRIDS
LREC = 2*(4*NX)
OPEN(UNIT=IU,STATUS=’SCRATCH’,ACCESS=’DIRECT’,RECL=LREC,

1 FORM=’UNFORMATTED’)
IF(IPF.EQ.1) WRITE(IT,*)’Calculating Projection Points ...’
DO 40 I=1,NY
DO 30 J=1,NX
K = (I-1)*NX + J

Comt CALL PROGSS(’ Calculating Projection Points ... Point No’,
IF(IPF.EQ.2) CALL PROGSS(PPCS,IT,K,NXY,20)
IF(IPF.EQ.3) CALL PROGSS(PPCS,IT,K,NXY, 5)
IF(MSK.GT.0 .AND. ZM(K).EQ.0) GO TO 30
CALL CALXYC(K,GS,X,Y)
PP(1,J) = X
PP(2,J) = Y

30 CONTINUE
WRITE(UNIT=IU,REC=I) ((PP(K,J),K=1,2),J=1,NX)

40 CONTINUE
WRITE(IT,*)

RETURN
END

SUBROUTINE COMENT(ID,CMT,NC)
C---
C RETURN COMMENT FOR THE <NAME>.INP FILE

C TUBA CREATES A CARD FILE "ON THE FLY" (ie. WHILE IT IS BEING RUN
C INTERACTIVELY). THE CARD FILE PROVIDES A RECORD OF WHAT OPTIONS AND
C PARAMETERS WERE USED AND LISTS THE SAMPLE STATISTICS OF EACH OUTPUT
C FIELD. THE CARD FILE CAN ALSO BE USED FOR BATCH PROCESSING.

CHARACTER COMTS(37)*42, CMT*(*)
INTEGER NCHRS(37)
DATA COMTS(1) /’1=(x,y) Locations, 2=Even Grid, 3=Uneven ’/
DATA COMTS(2) /’Input Filename for (x,y) Locations ’/
DATA COMTS(3) /’1=Point Centered, 2=Block Centered ’/
DATA COMTS(4) /’Maximum X and Y Field Dimensions ’/
DATA COMTS(5) /’Number of Nodes-X and Nodes-Y ’/
DATA COMTS(6) /’1=Normal, 2=exp(X), 3=10**(X) ’/
DATA COMTS(7) /’0=User,1=Exp,2=Gauss,3=Besl,4=Telis,5=GC ’/
DATA COMTS(8) /’1=Point Process, 2=Areal Average Process ’/
DATA COMTS(9) /’X and Y Dimensions of Averaging Area ’/
DATA COMTS(10) /’Desired Mean, Nugget and Sill ’/
DATA COMTS(11) /’X and Y Direction Correlation Lengths ’/
DATA COMTS(12) /’Generalized Covariance Model Coefficients ’/
DATA COMTS(13) /’Line Process by: 1=Spectral, 2=Moving Avg ’/
DATA COMTS(14) /’1=Default TBM Parameters, 2=Enter Manually’/
DATA COMTS(15) /’Number of Turning Band Lines ’/
DATA COMTS(16) /’TBM Line Discretization Distance ’/
DATA COMTS(17) /’Nbr of Harmonics for Discretizing Spectrum’/
DATA COMTS(18) /’Max Frequency for Truncation of Spectrum ’/
DATA COMTS(19) /’Discretization Distance for MA Process ’/
DATA COMTS(20) /’Discretization Distance for Weiner Process’/
DATA COMTS(21) /’Field ORIGIN Relative to TBM Origin ’/
DATA COMTS(22) /’Output Data Filename ’/
DATA COMTS(23) /’1=Output Only Z, 2=Output X,Y, and Z ’/

B.6

DATA COMTS(24) /’1=Unformatted, 2=Formatted Output ’/
DATA COMTS(25) /’Output Format for Writing Data to Disk ’/
DATA COMTS(26) /’1=Single Write Statement, 2=Line at a Time’/
DATA COMTS(27) /’1=First Row to Last, 2=Last Row to First ’/
DATA COMTS(28) /’1=Marsaglia URNG, 2=Machine Indep URNG ’/
DATA COMTS(29) /’Seed(s) for Random Number Generator ’/
DATA COMTS(30) /’Number of Realizations to be Simulated ’/
DATA COMTS(31) /’Maximum Turning Band Line Length ’/
DATA COMTS(32) /’Mask Filename ’/
DATA COMTS(33) /’Input Filename for grid-block widths ’/
DATA COMTS(34) /’1=Single file output, 2=Multiple files ’/
DATA COMTS(35) /’1=Minimal, 2=Med, 3=Frequent screen output’/
DATA COMTS(36) /’0=do not scale, 1=match T-stats exactly ’/
DATA COMTS(37) /’Mean, Nugget, Sill for Gen Cov Model ’/

DATA NCHRS / 40, 34, 35, 32, 29, 29, 40, 40, 36, 29, 37,
1 41, 41, 42, 28, 32, 42, 40, 38, 42, 35, 20,
1 36, 33, 38, 42, 40, 38, 35, 38, 32, 13, 36,
1 38, 42, 39, 36/

CMT = COMTS(ID)
NC = NCHRS(ID)

RETURN
END

SUBROUTINE COVPAR(IN,IT,IL,MODEL)
C---
C QUERY FOR COVARIANCE PARAMETERS OF THE RANDOM FIELD

INCLUDE ’tuba211d.inc’

WRITE(IT,10)
10 FORMAT(//’ ++++++++++++ COVARIANCE PARAMETERS ++++++++++++’/)

WRITE(IT,*)’Select Type Of Covariance Model:’
WRITE(IT,*)’(0) - User Specified’
WRITE(IT,*)’(1) - Exponential Model’
WRITE(IT,*)’(2) - Gaussian Covariance’
WRITE(IT,*)’(3) - Bessel Type Covariance’
WRITE(IT,*)’(4) - Telis Covariance Function’
WRITE(IT,*)’(5) - Generalized Covariance Model’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,ICOVF,1,7)
MODEL = ICOVF

IPAA = 1
C AREAL AVERAGE PROCESS DATA FOR USER DEFINED OR EXPONENTIAL MODELS

IF(ICOVF.LE.1) THEN
WRITE(IT,*)’(1) - Point Process’
WRITE(IT,*)’(2) - Areal Average Process’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IPAA,1,8)
IF(IPAA.EQ.2) THEN
WRITE(IT,*)’Enter X And Y Dimensions Of Averaging Rectangle’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,FX,2,9)

END IF
END IF

IF(ICOVF.EQ.5) THEN
WRITE(IT,*)’Enter Gen. Covariance Parameters A1,A3,A5’
WRITE(IT,*)’ K(r) = A1*r + A3*r**3 + A5*r**5’
WRITE(IT,*)’ A1,A5.GE.0, A3.GE.-(10/3)*SQRT(A1*A5) ’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,A1,3,12)
RETURN

END IF

WRITE(IT,*)’Enter Mean And Variance Parameters: If You Will Have’
WRITE(IT,*)’The Field(s) Exponentiated, Enter The Desired Mean &’
WRITE(IT,*)’Variance BEFORE Exponentiation (Variance=Nugget+Sill)’
WRITE(IT,*)
WRITE(IT,*)’Enter The Mean, Nugget And Sill For Covariance Model’

B.7

WRITE(IT,*)
CALL RDREAL(IN,IT,IL,AM,3,10)
IF(AN.LT.0 .OR. AV.LT.0) THEN
STOP ’***** ERR, nugget and sill must be > or = 0’

END IF

WRITE(IT,*)’Enter The X and Y Direction Correlation Lengths’
WRITE(IT,*)’ Make These Equal For Isotropic Fields ’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,CLX,2,11)

RETURN
END

SUBROUTINE DEFPAR(NLINE,XY)
C---
C CALCULATE DEFAULT TURNING BAND PARAMETERS

PARAMETER (PI=3.141592654)
REAL DLK(4),XY(*)
INTEGER NHR(4)
INCLUDE ’tuba211d.inc’
COMMON /IRSGRD/ GXMIN,GYMIN

DATA NHR /2048, 1024, 4096, 0 /
DATA DLK /0.05, 0.10, 0.025, 0./

C CALCULATE DEFAULT TBM ORIGIN AND MAXIMUM TBM LINE LENGTH
CALL ORGMAX(XY)

C SET DEFAULT NUMBER OF TBM LINES (BOTH NEEDED BECAUSE OF COMMON)
C THERE IS NO LONGER A "DEFAULT" NUMBER OF TBM LINES ...
Comt LINES = 16
Comt NLINE = 16

C SPECTRAL AND MOVING AVERAGE METHOD LINE PARAMETERS
IF(ICOVF.LE.4) THEN
ISAJ = 0
NHAR = NHR(ICOVF)
UN = 0.0625
DS = 0.05*AMIN1(CLX,CLY)

END IF

C BLOCK OR CELL SPACING FOR GRIDDED OUTPUT
IF(KS.EQ.2) THEN
K = 2 - IP
DX = XMAX / MAX(NX-K,1)
DY = YMAX / MAX(NY-K,1)

ELSE IF(KS.EQ.3) THEN
DX = GXMIN
DY = GYMIN

END IF

C GENERALIZED COVARIANCE MODEL DEFAULT LINE DISCRETIZATION DISTANCE
C DX,DY SET IN ORGMAX FOR THE CASE OF KS=1

IF(ICOVF.EQ.5) THEN
UN = AMIN1(DX,DY)
DT = 0.2*UN

END IF

C UN = NORMALIZED LINE DISCRETIZATION DISTANCE = 2*PI/FMAX (FFT METHOD)
C FOR STATIONARY MODELS, UN IS SET EQUAL TO 0.0625 (16 PTS/CORR LGTH)
C IF(UN.GT.DX .OR. UN.GT.DY) THEN UN IS DECREASED APPROPRIATELY.
C ALSO MAKE SURE MA PROCESS PARAMETER DS IS SMALL ENOUGH.

IF(KS.GT.1 .AND. ICOVF.LE.4) THEN
CM = AMAX1(CLX,CLY)
DC = AMIN1(CLX/16.,CLY/16.)
DN = AMIN1(.99*DX/CLX,.99*DY/CLY,DC/CM)
UN = AMIN1(UN,DN)
DS = AMIN1(DS,UN*AMIN1(CLX,CLY)/10)

END IF

C IF THE SPECTRAL METHOD IS USED .AND. UN IS DECREASED, THEN THE
C FREQUENCY SPACING DELK MAY BE GREATER THAN THE ALLOWABLE MAXIMUM

B.8

C (SEE DLK IN DATA STATEMENT). WHEN THIS HAPPENS, NHAR IS INCREASED
C (BY A FACTOR OF 2 FOR THE FFT) TO OBTAIN A SMALLER DELK.

FMAX = 2.*PI/UN
IF(UN.LT.0.0625 .AND. ICOVF.LE.3) THEN

16 IF(FMAX/FLOAT(NHAR).GT.DLK(ICOVF)) THEN
NHAR = 2*NHAR
GO TO 16

END IF
END IF

RETURN
END

SUBROUTINE FFT(F,NPT,IFB)
C---
C ONE DIMENSIONAL FAST FOURIER TRANSFORM ROUTINE (FORWARD AND INVERSE)
C
C THIS ROUTINE, MODIFIED BY D. A. (TONY) ZIMMERMAN AT NEW MEXICO TECH
C AND VERIFIED WITH IMSL ROUTINES, WAS TAKEN FROM PAGE 108 OF:
C
C RAFAEL .C GONZALEZ AND PAUL WINTZ, 1987.
C ‘‘DIGITAL IMAGE PROCESSING’’
C ADDISON-WESLEY PUBLISHING COMPANY
C
C F = COMPLEX SEQUENCE TO BE TRANSFORMED (INPUT)
C F = COMPLEX TRANSFORMED ARRAY ON OUTPUT
C NPT = NUMBER POINTS IN F TO BE TRANSFORMED
C IFB = -1 FOR FORWARD TRANSFORM (EXP(-i*2PIux/NPT))
C IFB = +1 FOR INVERSE TRANSFORM (EXP(+i*2PIux/NPT))
C---
C NOTE: THE INPUT SEQUENCE MUST BE OF LENGTH EQUAL TO 2**N FOR SOME N
C---

PARAMETER (PI=3.141592654)
COMPLEX F(*),U,W,T

IF(IFB.GT.0) THEN
DO 10 K=1,NPT

10 F(K) = CONJG(F(K))
END IF

LN = ALOG(FLOAT(NPT))/ALOG(2.0)
N = 2**LN
NV2 = N/2
NM1 = N-1

J = 1
DO 3 I=1,NM1
IF(I.GE.J) GO TO 1
T = F(J)
F(J) = F(I)
F(I) = T

1 K = NV2
2 IF(K.GE.J) GO TO 3

J = J-K
K = K/2
GO TO 2

3 J = J+K

DO 5 L=1,LN
LE = 2**L
LE1 = LE/2
U = CMPLX(1.0,0.0)
A = PI/LE1
W = CMPLX(COS(A),-SIN(A))
DO 5 J=1,LE1
DO 4 I=J,N,LE
IP = I+LE1
T = F(IP)*U
F(IP) = F(I)-T

4 F(I) = F(I)+T
5 U = U*W

B.9

IF(IFB.GT.0) THEN
DO 20 K=1,NPT

20 F(K) = CONJG(F(K))
END IF

RETURN
END

SUBROUTINE FFTGEN(L,L2,PA,Z1,DZ)
C---
C GENERATION OF THE LINE PROCESS VIA FAST FOURIER TRANSFORM

REAL PA(*),Z1(*)
COMPLEX DZ(*),i
INCLUDE ’tuba211d.inc’

C THE IMAGINARY PART YIELDS AN INDEPENDENT REALIZATION
IF(MOD(L,2).EQ.0) GO TO 30

i = (0.,1.)
IF(IPAA.EQ.2) READ(UNIT=L2,REC=L) (PA(M),M=1,NHAR)

DO 10 M=1,NHAR
DELF = PA(M)
SQDF = SQRT(6.*DELF)
A = SQDF * URN55()
B = SQDF * URN55()
DZ(M) = A - i*B

10 CONTINUE

CALL FFT(DZ,NHAR,-1)

DO 20 M=1,NHAR
20 Z1(M) = 2.0*REAL(DZ(M))

RETURN

30 DO 40 M=1,NHAR
40 Z1(M) = 2.0*AIMAG(DZ(M))

RETURN
END

SUBROUTINE FILPAR(IN,IT,IL)
C---
C QUERY FOR OUTPUT FILE PARAMETERS

CHARACTER FMT*35,FNAM*35
INCLUDE ’tuba211d.inc’
COMMON /OTPTS1/ FMT,FNAM
COMMON /OTPTS2/ IFO,IMO,IRO,ILN

WRITE(IT,5)
5 FORMAT(//’ +++++++++++++ OUTPUT FILE PARAMETERS +++++++++++++’/)

WRITE(IT,*)’Enter A Filename For The Output File(s)’
WRITE(IT,*)
CALL RDCHAR(IN,IT,IL,FNAM,22)

IF(KS.EQ.1) THEN
WRITE(IT,*)’(1) - Output Only The Field Values, Z’
WRITE(IT,*)’(2) - Output The (X,Y) Locations And Z’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IOF,1,23)

END IF

WRITE(IT,*)’(1) - Unformatted Output’
WRITE(IT,*)’(2) - Formatted Output’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IFM,1,24)

B.10

IF(IFM.EQ.2) THEN
IF(KS.EQ.1) WRITE(IT,10) ’"(2F12.2,1PE12.5)"’
IF(KS.GT.1) WRITE(IT,10) ’"(10F12.5)"’

10 FORMAT(’ Enter Output Format, e.g., ’,A)
WRITE(IT,*)’ (include the parentheses)’
WRITE(IT,*)
CALL RDCHAR(IN,IT,IL,FMT,25)

END IF

IF(KS.GT.1) THEN
WRITE(IT,*)’(1) - Write Out Matrix With One WRITE Statement’
WRITE(IT,*)’(2) - Write Out Matrix One Line (Row) At A Time’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IMO,1,26)
IMO = 2 - IMO
IRO = 1
IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN
WRITE(IT,*)’ Output the Rows of the Matrix via ...’
WRITE(IT,*)’(1) - First Row --> Last Row’
WRITE(IT,*)’(2) - Last Row --> First Row’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IRO,1,27)

END IF
END IF

C IOF AND IFO ARE PARAMETERS CONTROLLING OUTPUT FORMAT
KSS = MIN(KS,2)
IOF = MAX(IOF*(2-KSS),1)
IFO = IOF*2 - IFM + 1

RETURN
END

SUBROUTINE FLDPAR(IN,IT,IL,IU,XY,GS,ZM)
C---
C QUERY FOR OUTPUT FIELD PARAMETERS

CHARACTER FMT*35,FNAM*35, DATAF*35, MASKF*35
REAL XY(2,*),GS(*),ZM(*)
INCLUDE ’tuba211d.inc’
COMMON /IRSGRD/ GXMIN,GYMIN
COMMON /OTPTS1/ FMT,FNAM
COMMON /OTPTS2/ IFO,IMO,IRO,ILN

WRITE(IT,5)
5 FORMAT(//’ ++++++++++++ OUTPUT FIELD PARAMETERS ++++++++++++’/)

WRITE(IT,*)’(1) - Simulate Only At Specified (x,y) Locations’
WRITE(IT,*)’(2) - Simulate Onto A Regularly Spaced Grid’
WRITE(IT,*)’(3) - Simulate Onto An Unevenly Spaced Grid’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,KS,1,1)

IF(KS.EQ.1) THEN
WRITE(IT,*)’Enter The Filename For Reading (X,Y) Locations’
WRITE(IT,*)
CALL RDCHAR(IN,IT,IL,DATAF,2)
OPEN(UNIT=IU,FILE=DATAF,STATUS=’OLD’)
I = 0

10 I = I + 1
READ(IU,*,END=11) XY(1,I), XY(2,I)
GO TO 10

11 NXY = I-1
WRITE(IT,20) NXY

20 FORMAT(’ >>>>> ’,I8,’ Data Pairs Read’/)
CLOSE(UNIT=IU)

END IF

IF(KS.GT.1) THEN
WRITE(IT,*)’(1) - Point Centered Grid’
WRITE(IT,*)’(2) - Block Centered Grid’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IP,1,3)

B.11

WRITE(IT,*)’Enter The Maximum X And Y Field Dimensions’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,XMAX,2,4)

WRITE(IT,*)’Enter The Number Of Nodes In The X And Y Directions’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,NX,2,5)

IF(KS.EQ.3) THEN
WRITE(IT,*)’Enter The Filename For Reading Grid-Block Widths’
WRITE(IT,*)
CALL RDCHAR(IN,IT,IL,DATAF,33)
OPEN(UNIT=IU,FILE=DATAF,STATUS=’OLD’)
READ(IU,*) (GS(I),I=1,NX-2+IP)
READ(IU,*) (GS(NX+I),I=1,NY-2+IP)
CLOSE(UNIT=IU)
DO 30 I=1,NX

30 IF(GS(I).LT.GXMIN) GXMIN = GS(I)
DO 32 I=1,NY

32 IF(GS(NX+I).LT.GYMIN) GYMIN = GS(NX+I)
END IF

WRITE(IT,*)’Enter mask filename or type NONE or <cr>’
WRITE(IT,*)
CALL RDCHAR(IN,IT,IL,MASKF,32)
IF(MASKF.EQ.’ ’) MASKF = ’none’
NONE = INDEX(MASKF,’NONE’) + INDEX(MASKF,’none’)
IF(NONE.EQ.0) THEN
OPEN(UNIT=IU,FILE=MASKF,STATUS=’OLD’)
READ(IU,*) (ZM(I),I=1,NX*NY)
CLOSE(UNIT=IU)
DO 40 I=1,NX*NY

40 IF(ZM(I).NE.0) MSK = MSK + 1
END IF

END IF

WRITE(IT,*)’(1) - Generate a Field f(x) Whose pdf is Gaussian’
WRITE(IT,*)’(2) - Generate a Lognormal Field K(x) = exp(f(x))’
WRITE(IT,*)’(3) - Generate a Lognormal Field K(x) = 10**(f(x))’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,ILN,1,6)

RETURN
END

SUBROUTINE FSCALE(XY,ZZ,ZM,ILN,BAR,VAR,SSQ,PTS)
C---
C DO FINAL SCALING, ADD IN THE MEAN, NUGGET & CALCULATE MEAN AND VARIANCE

REAL ZZ(*), ZM(*), XY(2,*)
INCLUDE ’tuba211d.inc’

SUM = 0.0
SSQ = 0.0
HNUG = SQRT(3.0*AN)
SDEV = SQRT(AV)
SQLN = SQRT(FLOAT(LINES))
DO 10 K=1,NXY
IF(MSK.EQ.0 .OR. (MSK.GT.0 .AND. ZM(K).NE.0)) THEN
ZZ(K) = SDEV*ZZ(K)/SQLN
ZZ(K) = ZZ(K) + AM
IF(AN.GT.0) ZZ(K) = ZZ(K) + URNAB(-HNUG,+HNUG)
SUM = SUM + ZZ(K)
SSQ = SSQ + ZZ(K)*ZZ(K)

END IF
10 CONTINUE

PTS = FLOAT(MSK)
IF(PTS.EQ.0) PTS = FLOAT(NXY)
BAR = SUM / PTS
VAR =(SSQ-PTS*BAR*BAR) / (PTS-1.)

C FROM THIS POINT ON WE CAN SIMPLY CHECK IF ZZ(K).NE.0 (.NE.EXACT ZERO)
C RATHER THAN CHECKING THE MSK FLAG AND ZM ARRAY (IF MASK OPTION USED)

B.12

C USE THE FORMULA ON PAGE 10 OF THE MANUAL (THE FORMULA THAT’S LABELED
C "DO NOT USE") TO SCALE THE FIELD TO MATCH THE DESIRED MEAN & VARIANCE.
C READ SECTION 2.1.2 OF MANUAL BEFORE INVOKING THIS OPTION.
C BAR LEFT IN FORMULAS BELOW FOR CLARITY. AN=NUGGET, AV=SILL

IF(IMSEX.EQ.1) THEN
DO 30 I=1,NXY

30 IF(ZZ(I).NE.0) ZZ(I) = ZZ(I) - BAR
BAR = 0.
SFAC = SQRT(AN+AV) / SQRT(VAR-BAR*BAR)
DO 40 I=1,NXY

40 IF(ZZ(I).NE.0) ZZ(I) = SFAC * (ZZ(I)-BAR) + AM
BAR = AM
VAR = AN + AV

END IF
comt if you don’t believe BAR=AM, VAR=AN+AV, uncomment the following lines
comt SUM = 0.
comt SSQ = 0.
comt DO 50 K=1,NXY
comt IF(ZZ(K).NE.0) THEN
comt SUM = SUM + ZZ(K)
comt SSQ = SSQ + ZZ(K)*ZZ(K)
comt END IF
50 CONTINUE
comt BAR = SUM / PTS
comt VAR =(SSQ-PTS*BAR*BAR) / (PTS-1.)

comt EXPONENTIATE THE FIELD IF REQUESTED ...
IF(ILN.EQ.2) THEN
DO 60 K=1,NXY

60 IF(ZZ(K).NE.0) ZZ(K) = EXP(ZZ(K))
ELSE IF(ILN.EQ.3) THEN
DO 70 K=1,NXY

70 IF(ZZ(K).NE.0) ZZ(K) = 10.**(ZZ(K))
END IF

RETURN
END

SUBROUTINE INTPAR(XY)
C---
C CALCULATE INTERNAL PARAMETERS

PARAMETER (PI=3.141592654)
REAL XY(*)
INCLUDE ’tuba211d.inc’

Comt SEE BLOCK DATA MODULE
Comt DATA FM,FA,AM,AV,CLX,CLY /1.0, 0.0, 0.0, 1.0, 1.0, 1.0/

C NORMALIZE DISTANCE FROM TBM ORIGIN TO OUTPUT FIELD ORIGIN
XO = XO / CLX
YO = YO / CLY

C DX AND DY DEPEND ON WHETHER GRID IS POINT OR BLOCK CENTERED
IF(KS.EQ.2) THEN
K = 2 - IP
DX = XMAX / MAX(NX-K,1)
DY = YMAX / MAX(NY-K,1)

END IF

C NORMALIZE LINE DISCRETIZATION DISTANCE (UN) FOR STATIONARY MODELS
IF(IDFP.NE.1 .AND. ICOVF.LE.4) UN = UN / AMAX1(CLX,CLY)

C NORMALIZE MAX DISCRETIZATION DISTANCE ALONG ANY TBM LINE, THEN
C ESTIMATE NMAX = THE NUMBER OF POINTS ALONG THE LONGEST TBM LINE

IF(ICOVF.LE.4) THEN
TBMX = TBMX / AMIN1(CLX,CLY)
NMAX = TBMX / UN + 1

END IF

C FOR FFT GENERATION ALGORITHM, LINE PROCESS LENGTH = UN*NHAR/2.
C IF THAT IS LESS THAN TBMX, NHAR MUST BE INCREASED.

B.13

IF(ICOVF.LE.3 .AND. ISAJ.EQ.0) THEN
16 IF(UN*NHAR/2.0 .LT. TBMX) THEN

NHAR = 2*NHAR
GO TO 16

END IF
END IF

C CALCULATE PARAMETERS NEEDED FOR THE MOVING AVERAGE PROCESS
IF(ICOVF.EQ.4 .OR. IULP.EQ.2) THEN
DS = DS/AMIN1(CLX,CLY)
UD = UN/DS

C FOR USER DEFINED MA PROCESS, CLN MUST BE REPLACED WITH A NUMBER
C REPRESENTING THE NBR CORR LGTHS THE MA WEIGHTING FCN IS NON-ZERO
Comt IF(ICOVF.EQ.0) KD = CLN/DS + 1

IF(ICOVF.EQ.4) KD = 5.0/DS + 1
NR = NMAX*UD + KD
IF(DS.GT.UN) FM = UD
IF(DS.GT.UN) FA = 0.5

END IF

C GENERALIZED COVARIANCE PARAMETERS
IF(ICOVF.EQ.5) THEN
NMAX = TBMX/UN + 1
KT = AMAX1(UN/DT,1.)
DT = UN / FLOAT(KT)
SG = SQRT(24.*DT)
B0 = SQRT(A1*PI/2.)
B2 = SQRT(A5*PI*15./16.)
B1 = A3*PI* 3./4.
B1 = SQRT(B1*B1 + 2.*B0*B2)

END IF

RETURN
END

SUBROUTINE LSTINP(IL)
C---
C LIST INPUT VALUES & INTERNAL PARAMETERS USED IN LINE PROCESS GENERATION
C
C AS INPUT IS READ, IT IS WRITTEN (AND ANNOTATED) ON UNIT IL. NOW REWIND
C IL, REREAD THOSE LINES AND STORE THEM IN THE "INTERNAL FILE" BUF. THEN
C OPEN IL WITH THE DATA FILENAME AND EXTENSION ".INP" & DUMP BUF INTO IT.
C---

INTEGER NC(32)
CHARACTER FMT*35,FNAM*35,LSTF*35,REC*80,BUF(32)*80
INCLUDE ’tuba211d.inc’
COMMON /OTPTS1/ FMT,FNAM
COMMON /OTPTS2/ IFO,IMO,IRO,ILN

C READ THE ANNOTATED INPUT PARAMETERS FROM SCRATCH FILE (UNIT IL)
C AND WRITE THEM TO THE INTERNAL FILE "BUF"

REWIND IL
DO 10 K=1,32
READ(IL,5,END=11) REC

5 FORMAT(A)
WRITE(BUF(K),5) REC
NC(K) = NCHR(REC)

10 CONTINUE
11 NREC = K-1

C OPEN THE <NAME>.INP LISTING FILE; REUSE LOGICAL UNIT IL AND
C WRITE THE ANNOTATED INPUT PARAMETERS TO THIS LIST FILE

CLOSE(UNIT=IL,STATUS=’DELETE’)
IDOT = INDEX(FNAM,’.’)
IF(IDOT.EQ.0) IDOT = NCHR(FNAM) + 1
LSTF = FNAM(1:IDOT-1) // ’.inp’
OPEN(UNIT=IL,FILE=LSTF,STATUS=’UNKNOWN’,FORM=’FORMATTED’)
DO 15 K=1,NREC

15 WRITE(IL,5) BUF(K)(1:NC(K))

C LIST OTHER INTERNAL PARAMETERS ...
TBMAXX = TBMX * AMIN1(CLX,CLY)
UNLAST = UN * AMAX1(CLX,CLY)
WRITE(IL,20) XO*CLX,YO*CLY,LINES,TBMAXX,UNLAST

B.14

20 FORMAT(/’ FIELD ORIGIN relative to the TBM origin =’,2G13.6,
1 /’ The Number of Turning Band Lines Equals =’,I9,
1 /’ The Maximum Turning Band Line Length =’,G13.6,
1 /’ Turning Band Line Discretization Length =’,G13.4)

IF(ICOVF.LE.3 .AND. IULP.NE.2 .AND. ISAJ.EQ.0) NMAX = NHAR
IF(ICOVF.EQ.4 .OR. IULP.EQ.2) WRITE(IL,30) DS*AMIN1(CLX,CLY)

30 FORMAT(’ Discretization Distance for MA Process =’,G13.4)
IF(ICOVF.GE.4 .OR. IULP.EQ.2) WRITE(IL,32) NMAX

32 FORMAT(’ Number of Output Points Along each Line =’,I9)

IF(ICOVF.EQ.5 .AND. (A3.NE.0 .OR. A5.NE.0)) WRITE(IL,35) DT
35 FORMAT(’ Discretization Distance for WL Process =’,G13.4)

IF(ICOVF.LE.3 .AND. IULP.LE.1) WRITE(IL,40) FMAX,NHAR,FMAX/NHAR
40 FORMAT(’ The Maximum Frequency for the Spectrum =’,G13.6,

1 /’ Number of Harmonics for the Spectrum =’,I9,
1 /’ Frequency Spacing in Spectral Domain =’,G13.5)

IF(KS.EQ.1) WRITE(IL,*)
IF(KS.EQ.2) THEN
WRITE(IL,45) DX,DY

45 FORMAT(’ The Spatial Discretizations, DELX, DELY =’,2G13.4)
SMPLS = (XMAX/CLX)/2.0*(YMAX/CLY)/2.0
IF(ICOVF.LE.4) WRITE(IL,50) CLX/DX,CLY/DY,SMPLS

50 FORMAT(’ No Points/correlation Length in X,Y Dir =’,F9.1,
1 3X,F9.1/’ Approximate No. of Independent Samples =’,F9.1)
END IF

RETURN
END

SUBROUTINE MOVAVG(TT,Z1,FF)
C---
C MOVING AVERAGE SIMULATION OF THE LINE PROCESS (FOR TELIS COVARIANCE)

REAL TT(*), Z1(*), FF(*)
INCLUDE ’tuba211d.inc’

C FM, FA, NR, UD AND KD ARE ALL CALCULATED IN SUBROUTINE INTPAR.
C CK IS FOR MOVING AVERAGE PROCESS ASSOCIATED WITH TELIS COV FCN.
C CK IS SET TO 1.0 IN SUBROUTINE CALINP FOR USER-DEFINED MOVING AVERAGES.

DO 10 K=1,NR
10 TT(K) = URN55()

DO 30 N=1,NMAX
Z1(N) = 0.0
IOFF =(N-1)*UD + 0.5
DO 20 K=1,KD
IADR = IOFF + FLOAT(K)*FM + FA
Z1(N) = Z1(N) + FF(K)*TT(IADR)

20 CONTINUE
Z1(N) = CK*Z1(N)

30 CONTINUE

RETURN
END

FUNCTION NCHR(BUF)
C---
C DETERMINE THE NUMBER OF CHARACTERS IN THE CHARACTER ARRAY BUF

CHARACTER BUF*(*)

LGTH = LEN(BUF)
DO 10 K=LGTH,1,-1

10 IF(BUF(K:K).NE.’ ’) GO TO 20
20 NCHR = K

RETURN
END

B.15

SUBROUTINE OPNFIL(IT,IL,IO,LREC,ISIM,NSIM,BAR,VAR,SSQ,PTS,
1 MODEL,ISEED)

C---
C OPEN DATA OUTPUT FILE AND LIST THE RANDOM FIELD STATISTICS

CHARACTER FMT*35,FNAM*35
CHARACTER FNAME*25,EXT*5,IFM*5,FRM*11
INCLUDE ’tuba211d.inc’
COMMON /OTPTS1/ FMT,FNAM
COMMON /OTPTS2/ IFO,IMO,IRO,ILN
DATA SMBAR,SMSSQ,SMPTS /0.0,0.0,0.0/

NC = NCHR(FNAM)
FNAME(1:NC) = FNAM(1:NC)
FNAME(NC+1:25) = ’ ’

C APPEND SIMULATION NUMBER TO FILENAME IF MULTIPLE FILES REQUESTED
IF(NF.GT.1) THEN
IDOT = INDEX(FNAM,’.’)
IF(IDOT.EQ.0) IDOT = NC + 1
NDIG = ALOG10(FLOAT(NSIM)) + 1
WRITE(IFM,10) NDIG

10 FORMAT(2H(I,I1,1H))
WRITE(EXT,IFM) ISIM
DO 15 I=1,NDIG-1

15 IF(EXT(I:I).EQ.’ ’) EXT(I:I) = ’0’
FNAME = FNAM(1:IDOT-1) // ’.’ // EXT(1:NDIG)
NC = IDOT + NDIG

END IF

IF(NF.GT.1 .OR. ISIM.EQ.1) THEN
CLOSE(UNIT=IO)
IF(MOD(IFO,2).EQ.0) FRM = ’UNFORMATTED’
IF(MOD(IFO,2).NE.0) FRM = ’FORMATTED’

Comt RECL cannot be used for unformatted files with Lahey Fortran
Comt OPEN(UNIT=IO,FILE=FNAME,STATUS=’UNKNOWN’,FORM=FRM,RECL=LREC)

OPEN(UNIT=IO,FILE=FNAME,STATUS=’UNKNOWN’,FORM=FRM)
END IF

C LIST NEW RANDOM SEED FOR MULTIPLE SIMULATION RUN
IF(NSIM.GT.1) WRITE(IL,18) ISIM,FNAME(1:NC),ISEED

18 FORMAT(/24X,’ Simulation Nmbr =’,I9,
1 /24X,’ Output Filename =’,1X,A,
1 /24X,’ New Random Seed =’,I12)

C LIST THE STATISTICS FOR THE SAMPLE DATA TO LIST FILE AND TERMINAL
WRITE(IL,20) BAR,VAR

20 FORMAT(24X,’ The Sample Mean =’,G13.5,
1 /24X,’ Sample Variance =’,G13.5)
IF(IPF.NE.1) WRITE(IT,*)
IF(IPF.NE.1 .AND. NSIM.GT.1) WRITE(IT,28) ISIM

28 FORMAT(’ Simulation Nmbr =’,I8)
WRITE(IT,30) FNAME(1:NC),BAR,VAR

30 FORMAT(’ Output Filename =’,1X,A,
1 /’ The Sample Mean =’,G13.5,
1 /’ Sample Variance =’,G13.5/)

SMBAR = SMBAR + BAR
SMSSQ = SMSSQ + SSQ
SMPTS = SMPTS + PTS

C LIST ENSEMBLE STATISTICS IF THIS IS THE LAST REALIZATION
IF(NSIM.GT.1 .AND. ISIM.EQ.NSIM) THEN
ENBAR = SMBAR/FLOAT(NSIM)
ENVAR = (SMSSQ-SMPTS*ENBAR*ENBAR)/(SMPTS-1.)
WRITE(IL,40) ENBAR,ENVAR

40 FORMAT(/22X,’ THE ENSEMBLE STATISTICS ...’ ,
1 /22X,’ The Ensemble Mean =’,G13.5,
1 /22X,’ Ensemble Variance =’,G13.5)

WRITE(IT,50) ENBAR,ENVAR
50 FORMAT(//’ THE ENSEMBLE STATISTICS ...’,

1 /’ The Ensemble Mean = ’,G13.5,
1 /’ Ensemble Variance = ’,G13.5)
END IF

RETURN
END

B.16

SUBROUTINE ORGMAX(XY)
C---
C CALCULATE DEFAULT TBM ORIGIN AND MAXIMUM DISTANCE ALONG ANY TBM LINE

REAL XY(2,*)
INCLUDE ’tuba211d.inc’

C FOR OUTPUT AT ARBITRARY LOCATIONS (KS=1):
C SET DEFAULT TBM ORIGIN EQUAL TO THE MINIMUM (X,Y) COORDINATE

IF(KS.EQ.1) THEN
X14 = -1.E-15
X23 = +1.E+15
Y12 = -1.E-15
Y34 = +1.E+15
DO 10 I=1,NXY
X14 = AMAX1(XY(1,I),X14)
X23 = AMIN1(XY(1,I),X23)
Y12 = AMAX1(XY(2,I),Y12)
Y34 = AMIN1(XY(2,I),Y34)

10 CONTINUE
XO = X23
YO = Y34
DXX = X14 - XO
DYY = Y12 - YO
TBMX = SQRT(DXX*DXX + DYY*DYY)

C --
C THE REMAINDER OF THIS IF-BLOCK PERTAINS ONLY TO THE CASE OF GENER-
C ATING AT ARBITRARY LOCATIONS (KS=1) USING GENERALIZED COVARIANCES.
C The following is used to calculate DX and DY and ASSUMES a uniform
C distribution of the "finite element" grid points (i.e., the (x,y)
C arbitrary locations for generating the field). DX and DY are only
C needed for this case (KS=1) in subroutine DEFPAR where the DEFAULT
C TBM line discretization length (UN) is calculated. The calculated
C value of UN is only APPROXIMATED and should be checked for adequacy
C (e.g., UN should be .LE. the minimum spacing between any two field
C generation points). ASSUMPTIONS: (1) NY/NX=DYY/DXX, (2) NX*NY = NXY
C --

NX = SQRT(FLOAT(NXY)*DXX/DYY)
NY = NXY/NX
DX = 0.2*DXX/FLOAT(NX)
DY = 0.2*DYY/FLOAT(NY)

END IF

C FOR GRIDDED OUTPUT (KS=2,3):
C SET DEFAULT TBM ORIGIN AND FIND THE MAXIMUM DISTANCE FROM
C THE TBM ORIGIN TO THE FAR CORNER OF THE GRID

IF(KS.GT.1) THEN
XO = 0.0
YO = 0.0
TBMX = SQRT(XMAX*XMAX + YMAX*YMAX)

END IF

RETURN
END

SUBROUTINE OUTPUT(IT,IL,IO,ISIM,NSIM,XY,ZZ,ZM,NEWS)
C---
C FINISH FIELD GENERATION, THEN WRITE FIELD TO OUTPUT FILE

CHARACTER FMT*35,FNAM*35
REAL ZZ(*), ZM(*), XY(2,*)
INCLUDE ’tuba211d.inc’
COMMON /OTPTS1/ FMT,FNAM
COMMON /OTPTS2/ IFO,IMO,IRO,ILN

C DO THE FINAL SCALING, ADD IN THE MEAN, AND CALCULATE STATISTICS
CALL FSCALE(XY,ZZ,ZM,ILN,BAR,VAR,SSQ,PTS)

C OPEN OUTPUT FILE AND LIST RANDOM FIELD SAMPLE STATISTICS
C LREC = BYTE LENGTH OF UNFORMATTED RECORDS

LREC = 256
IF(MOD(IFO,2).EQ.0) THEN
LREC = 4*NX
IF(IMO.EQ.1) LREC = 4*NXY

END IF

B.17

CALL OPNFIL(IT,IL,IO,LREC,ISIM,NSIM,BAR,VAR,SSQ,PTS,ICOVF,NEWS)

C IFO,IMO AND IRO ARE INTERNAL PARAMETERS CONTROLLING OUTPUT FORMAT;
C THESE ARE CALCULATED IN SUBROUTINE FILPAR.
C IFO EVEN,ODD -> UNFORMATTED,FORMATTED RESPECTIVELY
C IMO = 0 -> WRITE MATRIX OUT LINE BY LINE
C IMO = 1 -> WRITE MATRIX OUT WITH ONE WRITE STATEMENT

IF(IMO.EQ.1 .OR. KS.EQ.1) THEN
IF(IFO.EQ.1) WRITE(IO,FMT) (ZZ(K),K=1,NXY)
IF(IFO.EQ.2) WRITE(IO) (ZZ(K),K=1,NXY)
IF(IFO.EQ.3) WRITE(IO,FMT) (XY(1,K),XY(2,K),ZZ(K),K=1,NXY)
IF(IFO.EQ.4) WRITE(IO) (XY(1,K),XY(2,K),ZZ(K),K=1,NXY)

ELSE
JST =(IRO-1)*NY + (2-IRO)
JND =(2-IRO)*NY + (IRO-1)
JNC = 3 - 2*IRO
DO 20 J=JST,JND,JNC
IST = (J-1)*NX + 1
IND = IST + NX - 1
IF(IFO.EQ.1) WRITE(IO,FMT) (ZZ(K),K=IST,IND)
IF(IFO.EQ.2) WRITE(IO) (ZZ(K),K=IST,IND)

20 CONTINUE
END IF

RETURN
END

SUBROUTINE PROGSS(MSG,LU,K,KMAX,INC)
C--
C REPORT COMPUTATION PROGRESS

CHARACTER MSG*(*)
COMMON /PGPARS/ PCL,IPG

IF(K.EQ.1) THEN
PCL = 100./FLOAT(KMAX)
WRITE(LU,10) MSG,K,INT(PCL)
IPG = 1
RETURN

END IF

PCT = 100 * FLOAT(K)/FLOAT(KMAX)
IPC = INT(PCT)
DIF = PCT - PCL

IPR = 0
IF(INC.EQ.0) THEN
IPR = 1

ELSE IF(KMAX.LE.99) THEN
IF(DIF.GT.INC) IPR = 1

ELSE
IF(MOD(IPC,INC).EQ.0 .AND. DIF.GE.2) IPR = 1

END IF
IF(K.EQ.KMAX) IPR = 1

IPG = 0
IF(IPR.EQ.1) THEN
IPG = 1
PCT = AMIN1(PCT,99.9)
PCL = PCT
IF(PCT.EQ.99.9) PCL = 0.0
WRITE(LU,10) MSG,K,INT(PCT)

10 FORMAT(A,I8,’ ... (’,I2,’ %) ’)
END IF

RETURN
END

B.18

SUBROUTINE PROJCT(L,IT,IU,XY,PP,SS,CC,ZZ,ZM,Z1)
C---
C ADD PROJECTIONS FROM THE LTH TBM LINE ONTO OUTPUT FIELD

REAL XY(2,*), PP(2,*), SS(*), CC(*), ZZ(*), ZM(*), Z1(*)
INTEGER INC(3)
INCLUDE ’tuba211d.inc’
COMMON /PGPARS/ PCL,IPG
CHARACTER PLPD*43,TBLIN*22
DATA INC /20,5,0/
DATA TBLIN /’ Turning Band Line ...’/
DATA PLPD /’ Projecting Line Process Data ... Point No’/

C ZERO OUT THE OUTPUT FIELD IF ON TURNING BAND LINE NO 1
IF(L.EQ.1) THEN
DO 10 K=1,NXY

10 ZZ(K) = 0.0
END IF

C FOR OUTPUT AT ARBITRARY (X,Y) LOCATIONS ...
IF(KS.EQ.1) THEN
CALL PROGSS(TBLIN,IT,L,LINES,INC(IPF))
PCLSAV = PCL
IPGSAV = IPG
DO 20 K=1,NXY

Comt CALL PROGSS(’ Projecting Line Process Data ... Point No’,
IF(IPF*IPGSAV.GE.2) CALL PROGSS(PLPD,IT,K,NXY,INC(IPF-1))
CALL PROJSB(XY,K,L,K,CC,SS,ZZ,Z1)

20 CONTINUE
PCL = PCLSAV
GO TO 50

END IF

C FOR OUTPUT ONTO REGULAR OR IRREGULARLY-SPACED GRIDS ...
CALL PROGSS(TBLIN,IT,L,LINES,INC(IPF))
PCLSAV = PCL
IPGSAV = IPG
DO 40 I=1,NY
READ(UNIT=IU,REC=I) ((PP(K,J),K=1,2),J=1,NX)
DO 30 J=1,NX
K = (I-1)*NX + J

Comt CALL PROGSS(’ Projecting Line Process Data ... Point No’,
IF(IPF*IPGSAV.GE.2) CALL PROGSS(PLPD,IT,K,NXY,INC(IPF-1))
IF(MSK.GT.0 .AND. ZM(K).EQ.0) GO TO 30
CALL PROJSB(PP,J,L,K,CC,SS,ZZ,Z1)

30 CONTINUE
40 CONTINUE

PCL = PCLSAV

50 IF(IPF*IPGSAV.GT.1) WRITE(IT,*)
RETURN
END

SUBROUTINE PROJSB(A2,J,L,K,CC,SS,ZZ,Z1)
C---
C DO THE PROJECTION FOR BOTH GRIDDED AND NON-GRIDDED FIELDS

REAL A2(2,*), CC(*), SS(*), ZZ(*), Z1(*)
INCLUDE ’tuba211d.inc’

XP = A2(1,J)/CLX + XO
YP = A2(2,J)/CLY + YO
XD = ABS(XP*CC(L) + YP*SS(L))
N1 = INT(XD/UN)+1
ZZ(K) = ZZ(K) + Z1(N1)

RETURN
END

B.19

SUBROUTINE RDINPT(IN,IT,IL,IU,XY,ZM,MODEL,NLINE,NSIM)
C---
C CONTROL MODULE FOR READING INPUT PARAMETERS

REAL XY(*),ZM(*)
INCLUDE ’tuba211d.inc’

WRITE(IT,10)
10 FORMAT(//’ +++++++++ Program "TUBA (version 2.11d)" +++++++++’,

1 //’ A Code For Simulating 2D Random Fields’,
1 /’ Via The Turning Bands Method’/)

C OPEN TEMPORARY FILE (LATER DELETED)
OPEN(UNIT=IL,STATUS=’SCRATCH’)

C QUERY FOR OUTPUT FIELD PARAMETERS
CALL FLDPAR(IN,IT,IL,IU,XY,XY,ZM)

C QUERY FOR COVARIANCE PARAMETERS
CALL COVPAR(IN,IT,IL,MODEL)

C QUERY FOR TURNING BANDS PARAMETERS
CALL TBMPAR(IN,IT,IL,NLINE,XY)

C MODEL REFERS TO THE LINE PROCESS GENERATION METHOD
C WHEREAS ICOVF REFERS THE THE COVARIANCE MODEL TYPE
C NEXT LINE IS NEEDED IN THE MAIN MODULE (FOR A USER-DEFINED MA PROCESS)

IF(IULP.EQ.2) MODEL = 4

C QUERY FOR OUTPUT FILE PARAMETERS
CALL FILPAR(IN,IT,IL)

C QUERY FOR SIMULATION PARAMETERS
CALL SIMPAR(IN,IT,IL,NSIM)

RETURN
END

SUBROUTINE RDINTG(IN,IT,IL,IV,NV,ID)
C---
C READ AND REFLECT INTEGER INPUT DATA

CHARACTER CMT*42, BUF*(*)
INTEGER IV(*)
REAL RV(*)

READ (IN,*) (IV(I),I=1,NV)
WRITE(IT,*)’>>>>> ’,(IV(I),I=1,NV)
WRITE(IT,*)’ ’

CALL COMENT(ID,CMT,NC)
IF(NV.EQ.1) WRITE(IL,11) IV(1), CMT(1:NC)
IF(NV.EQ.2) WRITE(IL,12) IV(1),IV(2), CMT(1:NC)

11 FORMAT(2X, I12,T36,A)
12 FORMAT(2X,2I12,T36,A)

RETURN

ENTRY RDREAL(IN,IT,IL,RV,NV,ID)
C--
C READ AND REFLECT REAL INPUT DATA

READ (IN,*) (RV(I),I=1,NV)
WRITE(IT,*)’>>>>> ’,(RV(I),I=1,NV)
WRITE(IT,*)’ ’

CALL COMENT(ID,CMT,NC)
IF(NV.EQ.1) WRITE(IL,21) RV(1), CMT(1:NC)
IF(NV.EQ.2) WRITE(IL,22) RV(1),RV(2), CMT(1:NC)
IF(NV.EQ.3) WRITE(IL,23) RV(1),RV(2),RV(3),CMT(1:NC)

21 FORMAT(2X, G13.5,T36,A)
22 FORMAT(2X,2G13.5,T36,A)
23 FORMAT(1PE11.3,2E11.3,T36,A)

RETURN

B.20

ENTRY RDCHAR(IN,IT,IL,BUF,ID)
C--
C READ AND REFLECT CHARACTER VARIABLES

READ(IN,30) BUF
30 FORMAT(A)

NB = NCHR(BUF)
IF(NB.EQ.0) BUF = ’ ’
IF(NB.EQ.0) NB = 1
WRITE(IT,*)’>>>>> ’,BUF(1:NB)
WRITE(IT,*)’ ’

CALL COMENT(ID,CMT,NC)
WRITE(IL,35) BUF(1:NB),CMT(1:NC)

35 FORMAT(A,T36,A)

RETURN
END

SUBROUTINE SIMPAR(IN,IT,IL,NSIM)
C---
C READ SIMULATION PARAMETERS

SAVE ISEED,JSEED
CHARACTER BUF*32
INCLUDE ’tuba211d.inc’

WRITE(IT,10)
10 FORMAT(//’ +++++++++++++ SIMULATION PARAMETERS ++++++++++++++’/)

WRITE(IT,*)’(1) - Marsaglia and Bray Random Number Generator’
WRITE(IT,*)’(2) - Machine Independent Random Number Generator’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IURN,1,28)

WRITE(IT,*)’Enter Integer Seed(s) To Initialize The Generator’
IF(IURN.EQ.2) WRITE(IT,20)

20 FORMAT(’ Seed For This Generator Must Be 8 Digits Long ’)
WRITE(IT,*)

Comt CALL RDINTG(IN,IT,IL,ISEED,1,29)
CALL RDCHAR(IN,IT,IL,BUF,29)
READ(BUF,*,END=21) ISEED,JSEED
GO TO 30

21 JSEED = ISEED
30 IF(IURN.EQ.1) DUMY = UNITMB(ISEED)

IF(IURN.EQ.2) DUMY = UNITSS(IT,ISEED)

WRITE(IT,*)’Enter The Number Of Realizations To Be Simulated’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,NSIM,1,30)

IF(NSIM.GT.1) THEN
WRITE(IT,*)’(1) - All Realizations Written To One File’
WRITE(IT,*)’(2) - A Separate File For Each Realization’
WRITE(IT,*)’ (e.g., file.1, file.2 ... file.99)’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,NF,1,34)

END IF

WRITE(IT,*)’(0) - Do NOT Artifically Scale The Realizations’
WRITE(IT,*)’(1) - Scale Data To Match Mean and Variance Exactly’
WRITE(IT,*)’ Please Read Section 2.1.2 Of The Manual’
WRITE(IT,*)’ Before Choosing This Option’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IMSEX,1,36)

IF(IMSEX.EQ.1 .AND. ICOVF.EQ.5) THEN
WRITE(*,*)’GC Model: Enter Desired Mean, Nugget and Sill’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,AM,3,37)

END IF

WRITE(IT,*)’Specify The Level Of Status Reporting To The Screen’
WRITE(IT,*)’(1) - Minimal (e.g., For Many Realizations)’

B.21

WRITE(IT,*)’(2) - More Frequent (e.g., For Many TBM Lines)’
WRITE(IT,*)’(3) - Very Frequent (e.g., For Very Large Fields)’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IPF,1,35)

RETURN

ENTRY RESEED(ISIM,NUSEED)
C---------------------------------------
C RESEED THE RANDOM NUMBER GENERATOR

IF(ISIM.EQ.1) THEN
NUSEED = ISEED
IF(JSEED.EQ.ISEED) RETURN
IF(IURN.EQ.1) DUMY = UNITMB(JSEED)
IF(IURN.EQ.2) DUMY = UNITSS(IT,JSEED)
RETURN

END IF

NUSEED = 1.E+08*(URN55()+0.5)
IF(IURN.EQ.1) DUMY = UNITMB(NUSEED)
IF(IURN.EQ.2) THEN

36 IF(ALOG10(FLOAT(NUSEED)) .LT. 7) THEN
NUSEED = 10*NUSEED
GO TO 36

END IF
DUMY = UNITSS(IT,NUSEED)

END IF

RETURN
END

SUBROUTINE SPCTRL(L,L2,PA,Z1,DZ,S1,C1,S2,C2)
C---
C SPECTRAL SIMULATION OF THE LINE PROCESSES

PARAMETER (TUPI=6.283185308)
COMPLEX DZ(*)
REAL PA(*),Z1(*),S1(*),C1(*),S2(*),C2(*)
INCLUDE ’tuba211d.inc’

C GENERATE LINE PROCESS USING THE FFT METHOD
IF(ISAJ.EQ.0) CALL FFTGEN(L,L2,PA,Z1,DZ)
IF(ISAJ.EQ.0) RETURN

C GENERATE LINE PROCESS USING THE METHOD OF SHINOZUKA AND JAN
DO 10 M=1,NHAR
THETA = URN55() * TUPI
C2(M) = COS(THETA)
S2(M) = SIN(THETA)

10 CONTINUE
IF(IPAA.EQ.2) READ(UNIT=L2,REC=L) (PA(M),M=1,NHAR)

C PA(M) = 2.0 * SQRT(SPECTRL DENSITY * DELTA OMEGA)
C C2SAV ETC IS FOR TRIG IDENTITIES - THE COS(OMEGA’*ZETA+PHI) TERM IS
C CALCULATED BY CONSIDERING ZETA = N*DELTA-ZETA AND TRIG IDENTITIES

DO 30 N=1,NMAX
Z1(N) = 0.0
DO 20 M=1,NHAR
Z1(N) = Z1(N)+ PA(M) * C2(M)
C2SAV = C2(M)
S2SAV = S2(M)
C2(M) = C2SAV*C1(M) - S2SAV*S1(M)
S2(M) = S2SAV*C1(M) + C2SAV*S1(M)

20 CONTINUE
30 CONTINUE

RETURN
END

B.22

FUNCTION SPDF(FRQ,ICOVF)
C---
C CALCULATE NORMALIZED 1D SPECTRAL DENSITY FUNCTION FOR POINT PROCESSES
C HAVING 2D COVARIANCE FUNCTIONS OF: USER-SPECIFIED (ICOVF=0),
C EXPONENTIAL (ICOVF=1), GAUSSIAN (ICOVF=2), BESSEL (ICOVF=3)

DATA SOME,THING /0.,1./

IF(ICOVF.EQ.0) THEN
C USER DEFINED SPECTRUM GOES HERE

SPDF = SOME + THING
RETURN

END IF

C EXPLANATION OF ANCIENT FORTRAN: (COMPUTED GO TO)
C IF(ICOVF.EQ. 1,2,3) THEN GO TO (10,20,30)

GO TO (10,20,30) ICOVF

10 DENOM =(1.+FRQ*FRQ)**1.5
SPDF = 0.5*FRQ/DENOM
RETURN

20 XARG = 0.25*FRQ*FRQ
SPDF = 0.25*FRQ*EXP(-XARG)
RETURN

30 DENOM = (1.+FRQ*FRQ)**2.0
SPDF = 1.0*FRQ/DENOM
RETURN

END

SUBROUTINE TBMPAR(IN,IT,IL,NLINE,XY)
C---
C QUERY FOR TURNING BANDS LINE PARAMETERS

PARAMETER (PI=3.141592654)
REAL XY(*)
INCLUDE ’tuba211d.inc’

WRITE(IT,10)
10 FORMAT(//’ ++++++++++++ TURNING BANDS PARAMETERS ++++++++++++’/)

WRITE(IT,*)’Enter The Number Of Turning Band Lines’
WRITE(IT,*)’ Use At Least 16 ’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,LINES,1,15)
NLINE = LINES

IF(ICOVF.EQ.0) THEN
WRITE(IT,*)’(1) - Line Process By A Spectral Method’
WRITE(IT,*)’(2) - Line Process By A Moving Average Method’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IULP,1,13)

ELSE
WRITE(IT,*)’For The Remaining Turning Band Parameters:’
WRITE(IT,*)’(1) - Use Default Turning Band Parameters’
WRITE(IT,*)’(2) - Enter The TBM Parameters Manually’
WRITE(IT,*)
CALL RDINTG(IN,IT,IL,IDFP,1,14)
IF(IDFP.EQ.1) CALL DEFPAR(NLINE,XY)
IF(IDFP.EQ.1) RETURN

END IF

WRITE(IT,*)’Enter The TBM Line Discretization Distance’
WRITE(IT,*)’ e.g., Smaller Than The Grid Spacing’
IF(ICOVF.NE.5) THEN
WRITE(IT,*)’e.g., 1/16th the Correlation Length’

END IF
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,UN,1,16)

IF(ICOVF.LE.3 .AND. IULP.NE.2) THEN
WRITE(IT,*)’Enter NBR Of Harmonics For Discretizing Spectrum’

B.23

WRITE(IT,*)
CALL RDINTG(IN,IT,IL,NHAR,1,17)

C SAJ METHOD BY DEFAULT, FFT METHOD IF NHAR=2**N FOR SOME N
ISAJ = 1
HMCS = NHAR

16 IF(HMCS/2 .GT. 1) THEN
HMCS = HMCS/2
GO TO 16

END IF
IF(HMCS.EQ.2) THEN
FMAX = 2.*PI/(UN/AMAX1(CLX,CLY))
ISAJ = 0

END IF
IF(ISAJ.EQ.1) THEN
WRITE(IT,*)’Enter Max Frequency For Truncation Of Spectrum’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,FMAX,1,18)

END IF
END IF

IF(ICOVF.EQ.4 .OR. IULP.EQ.2) THEN
WRITE(IT,*)’Enter Discretization Distance for the MA Process’
WRITE(IT,*)’ Suggest 1/20th Of The Correlation Length’
WRITE(IT,*)’and No Larger Than 1/10th TBM Line Disc. Dist.’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,DS,1,19)

END IF

DT = UN
IF(ICOVF.EQ.5 .AND. (A3.NE.0 .OR. A5.NE.0)) THEN
WRITE(IT,*)’Enter Discretization Distance for Weiner Process’
WRITE(IT,*)’Suggest 1/5th Of The TBM Discretized Distance’
WRITE(IT,*)

CALL RDREAL(IN,IT,IL,DT,1,20)
END IF

WRITE(IT,*)’Enter (Xo,Yo) Field Origin Relative To TBM Origin’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,XO,2,21)

WRITE(IT,*)’Enter the Maximum Turning Band Line Length’
WRITE(IT,*)
CALL RDREAL(IN,IT,IL,TBMX,1,31)

RETURN
END

FUNCTION UNITMB(ISEED)
C---
C URN01 generates UNIFORM RANDOM NUMBERS on the interval [0,1] using the
C algorithm of Marsaglia and Bray presented in (pages 567 & 597) of:
C
C "The Handbook of Random Number Generation and Testing
C with TESTRAND computer code"
C E. J. Dudewicz and T. G. Rally
C American Sciences Press, Inc. 1981.
C
C This generator was "recommended for practical use" (page 134) by the
C above authors. This generator passed the very sensitive and exhaustive
C tests described in the above reference.
C---
C NOTE !!! Compile with "integer overflow check" turned OFF
C---
C This version of Marsaglia’s code was arranged by D. A. Zimmerman
C at New Mexico Tech, Geoscience Dept., Hydrology Program, August, 1987.
C---
C DUMY = URNIT(ISEED) ! Initialize Random Number Generator
C DO 10 I=1,N ! Generate N Uniformly Distributed
C 10 X(I) = URN01() ! Random Numbers On Interval [0,1]
C---

INTEGER N1(64), N2(64), N(128), MS(6)
EQUIVALENCE (N(1),N1), (N(65),N2), (MS(1),ML)
COMMON /SEEDS/ ML,MM,MK,L,M,K

C*** SEE BLOCK DATA MODULE

B.24

C*** DATA L, M, K /089347405, 301467177, 240420681/
C*** DATA ML,MM,MK /65539, 33554433, 36243609/

DATA N1/ 880431333, 845941495, 233211304, 1989552121,
1 465185814, 280672924, 294923811, 969688974, 798989604,
1 379880543, 130022074, 1958997525, 1074191695, 680854387,
1 751282651, 1208899767, 695831691, 1667008051, 1682546364,
1 1984522335, 287570376, 1137852001, 1597983496, 2015817872,
1 1479672206, 1468443024, 1657203843, 326324124, 680973716,
1 1451006002, 1251441372, 241092947, 1815086916, 1807193097,
1 770906592, 725422944, 1822111098, 470585328, 939566271,
1 1084841038, 1988336409, 229735215, 1763201387, 2072973152,
1 1143606610, 548108569, 544252510, 1980873641, 1195919839,
1 2089487851, 1406149582, 1839198022, 2106705200, 189238196,
1 1170370207, 1304402631, 1936129483, 810953177, 706509560,
1 476957499, 1307077413, 824336639, 1487297852, 1591453718/

DATA N2/ 1348888685, 155452792, 265840413, 1440038626,
1 770186799, 1152058296, 1726999383, 1389732859, 1838014251,
1 1751063044, 102451305, 212848938, 1046489181, 976388856,
1 1797117421, 461971124, 259337424, 492056652, 1152625277,
1 1087711027, 344810019, 1477716555, 809152324, 1766452264,
1 1687482934, 1077592551, 1906112218, 328744821, 1380339247,
1 339750038, 1993648985, 1054008271, 2006727977, 1618648061,
1 1300903972, 168650429, 1734500183, 906733794, 614096451,
1 1092917209, 1180334545, 577024776, 1406305431, 648073629,
1 973807028, 883884075, 1562357277, 1705648154, 1377603620,
1 1845151798, 220566094, 768813055, 571717967, 218994012,
1 212872559, 1824677815, 1573937649, 450149130, 284847256,
1 2062965934, 47834840, 1766553923, 1580332201, 182920702/

I = MOD(ISEED,6) + 1
MS(I) = ISEED
RETURN

C ENTRY URN01()
ENTRY URNMB()

C--
C URN01 RETURNS UNIFORMLY DISTRIBUTED RANDOM NUMBERS ON [0.,1.]

L = ML * L
M = MM * M
K = MK * K
J = 1.0 + IABS(L) / 16777216

C URN01 = 0.5 + FLOAT(N(J)+L+M) * 0.23283064E-09
URNMB = FLOAT(N(J)+L+M) * 0.23283064E-09
N(J) = K

RETURN
END

FUNCTION UNITSS(LU,ISEED)
C---
C URN01 generates UNIFORM RANDOM NUMBERS on the interval [0,1]
C
C Reference: C. G. Swain and M. S. Swain 1980. "A Uniform
C Random Number Generator That Is Reproducible,
C HARDWARE-INDEPENDENT, And Fast" J. Chem. Inf.
C Comput. Sci. Vol 20. pp 56-58.
C
C According to E. J. Dudewicz, Dept. Statistics, Ohio State University,
C in "Modern and Easy Generation of Random Numbers / Testing of Random
C Number Generators with TESTRAND", 10th IMACS World Congress On System
C Simulation and Scientific Computation, August 8-13, 1982, Montreal,
C Canada, Proceedings, Volume 2, page 133, this generator failed the
C sensitive Chi-square on Chi-square test performed by the TESTRAND code.
C---
C This version of Swain & Swain’s code was arranged by D. A. Zimmerman
C at New Mexico Tech, Geoscience Dept., Hydrology Program, June, 1986.
C---
C DUMY = URNIT(12345678) ! INITIALIZE URNG: ISEED=12345678
C DO 10 K=1,N ! GENERATE N UNIFORMLY DISTRIBUTED
C 10 X(K) = URN01() ! RANDOM NUMBERS ON INTERVAL [0,1]
C---

B.25

PARAMETER (K1=35260417, K2=72619094, K3=86952743)
INTEGER M(0:3)
DATA M /0,K1,K2,K3 /

SEED = FLOAT(ISEED)
IPWR = ALOG10(SEED)

IF(IPWR.NE.7) THEN
WRITE(LU,*)’ ***** URN GENERATOR SEED MUST BE 8 DIGITS LONG’
WRITE(LU,*)’ PROGRAM EXECUTION HALTED’
STOP

END IF

M(1) = K1
M(2) = K2
M(3) = K3

I = MOD(ISEED,3) + 1
M(I) = ISEED

RETURN

C ENTRY URN01()
ENTRY URNSS()

C--
C URN01 RETURNS UNIFORMLY DISTRIBUTED RANDOM NUMBERS ON [0.,1.]

M(0) = M(1) + M(2) + M(3)

IF(M(2) .LT. 50000000) M(0) = M(0) + 1357
IF(M(0) .GE. 100000000) M(0) = M(0) - 100000000
IF(M(0) .GE. 100000000) M(0) = M(0) - 100000000

M(1) = M(2)
M(2) = M(3)
M(3) = M(0)

C URN01 = 1.0E-08 * M(0)
URNSS = 1.0E-08 * M(0) - 0.5

RETURN
END

FUNCTION URNAB(A,B)
C--
C URNAB returns uniformly distributed random numbers on [A,B]

comt URNAB = A + (B-A) * URN01()
URNAB = A + (B-A) * (URN55() + 0.5)

RETURN
END

FUNCTION URN55()
C---
C RETURN UNIFORMLY DISTRIBUTED RANDOM NUMBER ON INTERVAL [-.5,+.5]

INCLUDE ’tuba211d.inc’

C IURN = 1 MARSAGLIA AND BRAY RANDOM NUMBER GENERATOR (RECOMMENDED)
C IURN = 2 SWAIN AND SWAIN MACHINE INDEPENDENT RANDOM NUMBER GENERATOR

IF(IURN.EQ.1) URN55 = URNMB()
IF(IURN.EQ.2) URN55 = URNSS()

RETURN
END

B.26

SUBROUTINE WNRLVY(Z1)
C---
C NON STATIONARY CASE: WIENER-LEVY SIMULATION OF LINE PROCESS

REAL Z1(*)
INCLUDE ’tuba211d.inc’

Z1(1) = 0.0
W1 = 0.0
AI1 = 0.0
BI1 = 0.0
TT = 0.0
DO 20 N=2,NMAX
DO 10 K=1,KT
TT = TT+DT
W2 = W1 + SG * URN55()
AI1 = AI1 + 0.5*(W2+W1)*DT
BI1 = BI1 + 0.5*(W1*(TT-DT)+TT*W2)*DT
W1 = W2

10 CONTINUE
Z1(N) = B0*W1 + (B1+B2*TT)*AI1 - B2*BI1

20 CONTINUE

RETURN
END

FUNCTION WTEXP(OM,ACL,ASL,AL1,AL2)
C---
C CALCULATE SPECTRAL DENSITY WEIGHTS FOR EXPONENTIAL AREAL AVERAGE PROCESS

AS = SIN(AL1*OM*ACL/2.)
BS = SIN(AL2*OM*ASL/2.)

IF(ACL.NE.0. .AND. ASL.NE.0.) THEN
AL12 = AL1*AL1*AL2*AL2
OMOM = OM*OM*OM*OM
A1B1 = ACL*ACL*ASL*ASL
ASBS = AS*AS*BS*BS
ALOA = AL12*OMOM*A1B1
WTEXP = ASBS*(16./ALOA)

END IF

IF(ACL.EQ.0.) WTEXP = BS*BS*(4./(AL2*AL2*ASL*ASL*OM*OM))
IF(ASL.EQ.0.) WTEXP = AS*AS*(4./(AL1*AL1*ACL*ACL*OM*OM))

RETURN
END

FUNCTION WTUSR(OM,ACL,ASL,AL1,AL2)
C---
C RETURN SPECTRAL DENSITY WEIGHTS FOR USER-DEFINED AREAL AVERAGE PROCESS

DATA SOME,THING /0.,1./

C SEE CHAPTERS 2 AND 5 OF THE DOCUMENTATION
WTUSR = SOME + THING

RETURN
END

B.27

